Topic: Mitigating Harm + Bias
-
InnovateUS AI Workshop Archive
A comprehensive series of workshops and courses designed to equip public sector professionals with the knowledge and skills to responsibly integrate AI technologies into government operations.​
-
AI Technologies Today at BenCon 2024
Sarah Bargal provides an overview of AI, machine learning, and deep learning, illustrating their potential for both positive and negative applications, including authentication, adversarial attacks, deepfakes, generative models, personalization, and ethical concerns.
-
POVERTY LAWGORITHMS: A Poverty Lawyer’s Guide to Fighting Automated Decision-Making Harms on Low-Income Communities
This guide, directed at poverty lawyers, explains automated decision-making systems so lawyers and advocates can better identify the source of their clients' problems and advocate on their behalf. Relevant for practitioners, this report covers key questions around automated decision-making systems.
-
Popular Support for Balancing Equity and Efficiency in Resource Allocation
This study examines public attitudes toward balancing equity and efficiency in algorithmic resource allocation, using online advertising for SNAP enrollment as a case study.
-
Challenging the Use of Algorithm-driven Decision-making in Benefits Determinations Affecting People with Disabilities
This report analyzes lawsuits that have been filed within the past 10 years arising from the use of algorithm-driven systems to assess people’s eligibility for, or the distribution of, public benefits. It identifies key insights from the various cases into what went wrong and analyzes the legal arguments that plaintiffs have used to challenge those systems in court.
-
The Privacy-Bias Tradeoff: Data Minimization and Racial Disparity Assessments in U.S. Government
This academic paper examines how federal privacy laws restrict data collection needed for assessing racial disparities, creating a tradeoff between protecting individual privacy and enabling algorithmic fairness in government programs.
-
Automated Decision-Making Systems and Discrimination
This guidebook offers an introduction to the risks of discrimination when using automated decision-making systems. This report also includes helpful definitions related to automation.
-
ITEM 10: How a Small Legal Aid Team Took on Algorithmic Black Boxing at Their State’s Employment Agency (And Won)
This report investigates how D.C. government agencies use automated decision-making (ADM) systems and highlights their risks to privacy, fairness, and accountability in public services.
-
Surveillance, Discretion and Governance in Automated Welfare
This academic article develops a framework for evaluating whether and how automated decision-making welfare systems introduce new harms and burdens for claimants, focusing on an example case from Germany.
-
The Social Life of Algorithmic Harms
This series of essays seeks to expand our vocabulary of algorithmic harms to help protect against them.
-
What’s in a name? A survey of strong regulatory definitions of automated decision-making systems
The Electronic Privacy Information Center (EPIC) emphasizes the necessity of adopting broad regulatory definitions for automated decision-making systems (ADS) to ensure comprehensive oversight and protection against potential harms.
-
Looking before we leap: Exploring AI and data science ethics review process
This report explores the role that academic and corporate Research Ethics Committees play in evaluating AI and data science research for ethical issues, and also investigates the kinds of common challenges these bodies face.