Topic: Mitigating Harm + Bias
-
Enabling Principles for AI Governance
A report from the Center for Security and Emerging Technology (CSET) discussing enabling principles for artificial intelligence (AI) governance.
-
AI Toolkit
Guidance and Resources for Policymakers, Teachers and Parents to Advance AI Readiness in Ohio Schools.
-
What’s in a name? A survey of strong regulatory definitions of automated decision-making systems
The Electronic Privacy Information Center (EPIC) emphasizes the necessity of adopting broad regulatory definitions for automated decision-making systems (ADS) to ensure comprehensive oversight and protection against potential harms.
-
The Privacy-Bias Trade-Off
This policy brief explores how federal privacy laws like the Privacy Act of 1974 limit demographic data collection, undermining government efforts to conduct equity assessments and address algorithmic bias.
-
Saving Face: Investigating the Ethical Concerns of Facial Recognition Auditing
This paper explores design considerations and ethical tensions related to auditing of commercial facial processing technology.
-
Looking before we leap: Exploring AI and data science ethics review process
This report explores the role that academic and corporate Research Ethics Committees play in evaluating AI and data science research for ethical issues, and also investigates the kinds of common challenges these bodies face.
-
Disability, Bias, and AI
This report explores key questions that a focus on disability raises for the project of understanding the social implications of AI, and for ensuring that AI technologies don’t reproduce and extend histories of marginalization.
-
A Human Rights-Based Approach to Responsible AI
This paper argues that a human rights framework could help orient the research on artificial intelligence away from machines and the risks of their biases, and towards humans and the risks to their rights, helping to center the conversation around who is harmed, what harms they face, and how those harms may be mitigated.
-
The Social Life of Algorithmic Harms
This series of essays seeks to expand our vocabulary of algorithmic harms to help protect against them.
-
The Privacy-Bias Tradeoff: Data Minimization and Racial Disparity Assessments in U.S. Government
This academic paper examines how federal privacy laws restrict data collection needed for assessing racial disparities, creating a tradeoff between protecting individual privacy and enabling algorithmic fairness in government programs.
-
Automated Decision-Making Systems and Discrimination
This guidebook offers an introduction to the risks of discrimination when using automated decision-making systems. This report also includes helpful definitions related to automation.
-
POVERTY LAWGORITHMS: A Poverty Lawyer’s Guide to Fighting Automated Decision-Making Harms on Low-Income Communities
This guide, directed at poverty lawyers, explains automated decision-making systems so lawyers and advocates can better identify the source of their clients' problems and advocate on their behalf. Relevant for practitioners, this report covers key questions around automated decision-making systems.