Organization: ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT)
-
Closing the AI accountability gap: defining an end-to-end framework for internal algorithmic auditing
This paper introduces a framework for algorithmic auditing that supports artificial intelligence system development end-to-end, to be applied throughout the internal organization development lifecycle.
-
Who Audits the Auditors? Recommendations from a Field Scan of the Algorithmic Auditing Ecosystem
Through a field scan, this paper identifies emerging best practices as well as methods and tools that are becoming commonplace, and enumerates common barriers to leveraging algorithmic audits as effective accountability mechanisms.
-
The Privacy-Bias Tradeoff: Data Minimization and Racial Disparity Assessments in U.S. Government
This academic paper examines how federal privacy laws restrict data collection needed for assessing racial disparities, creating a tradeoff between protecting individual privacy and enabling algorithmic fairness in government programs.
-
Algorithmic Impact Assessments and Accountability: The Co-construction of Impacts
Algorithmic impact assessments (AIAs) are an emergent form of accountability for organizations that build and deploy automated decision-support systems. This academic paper explores how to co-construct impacts that closely reflects harms, and emphasizes the need for input of various types of expertise and affected communities.