Library
Discover the latest innovations, learn about promising practices, and find out what’s coming next with best-in-class resources from trusted sources.
Is there something missing from our library?

Search for the topic or resource you're looking for, or use the filters to narrow down results below.
-
ITEM 10: How a Small Legal Aid Team Took on Algorithmic Black Boxing at Their State’s Employment Agency (And Won)
In June 2022, Legal Aid of Arkansas won a significant victory in their ongoing work to compel Arkansas’ employment agency to disclose crucial details about how it uses automated decision-making systems to detect and adjudicate fraud.
-
Challenging the Use of Algorithm-driven Decision-making in Benefits Determinations Affecting People with Disabilities
This report analyzes lawsuits that have been filed within the past 10 years arising from the use of algorithm-driven systems to assess people’s eligibility for, or the distribution of, public benefits. It identifies key insights from the various cases into what went wrong and analyzes the legal arguments that plaintiffs have used to challenge those systems in court.
-
Blueprint for an AI Bill of Rights
The White House Office of Science and Technology Policy has identified five principles that should guide the design, use, and deployment of automated systems to protect the American public in the age of artificial intelligence. These principles help provide guidance whenever automated systems can meaningfully impact the public’s rights, opportunities, or access to critical needs.
-
Screened & Scored in the District of Columbia
This report explores how automated decision-making systems are being used in one jurisdiction: Washington, D.C.
-
Against Predictive Optimization: On the Legitimacy of Decision-Making Algorithms that Optimize Predictive Accuracy
This academic paper examines predictive optimization, a category of decision-making algorithms that use machine learning (ML) to predict future outcomes of interest about individuals. Through this examination, the authors explore how predictive optimization can raise concerns that make its use illegitimate and challenge claims about predictive optimization's accuracy, efficiency, and fairness.