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1. Introduction
The recent proliferation of generative artificial intelligence (GenAI) technologies such as pre-trained large 

language models (LLMs) has opened up new frontiers in computational law. An exciting area of development 

is the use of AI to automate the rule-based reasoning inherent in statutory and contract law. While this form of 

reasoning has long been studied using classical techniques of natural language processing (NLP) and formal 

logic, recent solutions increasingly make use of LLMs [11]; though they are far from perfect [4].

The advent of GenAI has made it possible to treat many of these natural language documents essentially as 

programs that compute a result given some set of facts. As such, it should be possible to understand, debug, 

maintain, evolve, and fix these documents using well-studied techniques from the field of software 

engineering. This article introduces several concepts of automated software testing and program analysis that 

could potentially be useful in computational law when applied to AI-driven analysis of statutes and contracts.

2. Background
Statutes are legal rules written by legislative or regulatory bodies (e.g., the Internal Revenue Code (IRC) deals 

with U.S. taxation). In prior research, the term statutory reasoning [13, 15] has been used to mean the 

automated application of such rules to a particular situation (e.g., whether an individual can claim a certain tax 

deduction in some year given their personal circumstances). Statutory reasoning is usually concerned with the 

identification of relevant rules and evaluating their composition.

2.1 Statutory Reasoning as Interpretation

Consider the task of reasoning about specific parts of the IRC that deal with standard deductions and 

computation of taxable income. The relevant statutes are provided in Appendix A.

Example 1. Alice and Bob are married and filing taxes jointly for the year 2018. Alice was born on 1/1/1981 

and Bob was born on 12/30/1975. In 2018, Alice and Bob’s adjusted gross income was $216,350. Alice and 

Bob do not itemize their deductions and do not qualify for any deductions other than the standard deduction. 

What is their taxable income for 2018?

Solution Approach. Although a seemingly simple question, correctly answering it requires applying multiple 

computational rules from the IRC (ref. Appendix A): §63(b) and §63(c)(1) to identify the calculation of 

standard deduction and taxable income; §63(c)(2)(A)(i) and §63(c)(2)(C) to determine the formula for basic 

standard deduction applicable to joint returns; §63(c)(7)(A)(ii) which overrides a value in the preceding 

formula; as well as realizing that several other rules such as §63(c)(3) and §63(f)(1) do not apply because Alice 

and Bob are not 65 years old in 2018, and that inflation adjustments decreed in §63(c)(4) and §63(c)(7)(B) do 

not apply in 2018. The final answer is $216,350-(2×$12,000)=$192,350.
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The reasoning process thus includes resolution of cross-references, handling of exceptions that may in- validate 

seemingly applicable rules, and performing numerical computations; crucially, however, this process assumes 

that all the facts (as they pertain to the rule-based reasoning) are clearly known and so it does not deal with the 

subjective interpretation of potentially ambiguous terms [10]. As such, statutory reasoning technology can also 

be expected to apply to contract law in limited contexts (e.g., to what extent does an insurance policy cover a 

particular incident?).

A modern LLM like Anthropic’s Claude 3 Opus can usually answer questions like Example 1 correctly when 

provided the relevant statutes in the prompt, and when instructed to explain its chain of thought [14]. Prior 

research has shown that on statutory reasoning datasets that include a subset of the IRC [13] and the Japanese 

Civil Code [11], LLM-based approaches have achieved accuracy upwards of 75–80% on tasks that do not 

involve numerical calculations.

2.2 Statutory Reasoning as Analysis

Another interesting though relatively less studied problem is the analysis of the statutes and/or contracts 

themselves, from the point of view of the drafters or other stakeholders interested in understanding how the 

rules apply in a variety of hypothetical situations. Such an analysis can be used to identify problematic edge 

cases in the legal text, or to ensure that certain consistency properties are met. For example, the Shelter Check 

[3] project aims to proactively identify tax loopholes in the IRC before they are exploited. A similar analysis in 

contract law might help identify if certain clauses were inconsistent or irrelevant when combined with other 

parts of the contract. GenAI is a promising technology for addressing such analysis.

With reference to the running example, we could potentially ask an LLM to determine if taxable income, as 

defined by 26 USC §63(b) can be negative and to demonstrate this with an example scenario. Claude 3 Opus 

generates the following example:

Example 2. Charlie and Diana are married and filing taxes jointly for the year 2018. Charlie was born on 

5/15/1952 and Diana was born on 8/22/1953. In 2018, Charlie and Diana’s adjusted gross income was 

$20,000. Charlie and Diana do not itemize their deductions and do not qualify for any deductions other than 

the standard deduction. What is their taxable income for 2018?

Author’s analysis. It appears that a mechanical application of §63(b) when adjusted gross income is less than 

the standard deduction can lead to a negative result for the computation of taxable income. The author of this 

article (who is not a lawyer) is not aware of any specific law that prevents this interpretation. Interestingly, IRS 

Publication 525 (2023) [20] references the term “negative taxable income” to have this meaning in the context 

of recovering prior year adjustments to gross income.

Overall, LLMs appear to be useful for synthesizing examples to reason about hypothetical situations.
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3. Software Engineering Methods for Statutory Reasoning
Our main argument is that the automated analysis of rule-based reasoning in statutes and contracts can now be 

viewed from the lens of software engineering. The legal text itself is a program that computes, given an input 

—i.e., a set of facts about a person or circumstance—some objective result such as whether a tax deduction is 

available (and how much) or whether an insurance policy covers an incident (and to what extent). Of course, 

the overall concept of treating rule-based legal documents as programs is not new: various efforts have been 

made towards formally defining statutes [18] or developing computable contracts [12]. This article proposes to 

treat natural language legal documents directly as if they were programs using LLMs, such that we can apply 

principled software engineering techniques in their analysis.

3.1 Example Generation via Coverage and Mutation Analysis

Example generation: Consider the task of generating one-paragraph example scenarios (as in Example 1) 

such that certain rules in the statute apply in specific ways. This could be useful for documentation or education

—for instance, the IRS embeds hundreds of examples across its various publications and form instructions in 

order to demonstrate how federal tax law applies across various circumstances. Additionally, high quality 

examples can also aid in training language models to perform more accurate statutory reasoning—researchers 

have found that augmenting training data with additional examples improves accuracy on some tasks in the 

COLIEE dataset [21].

Software test generation: Given our view of treating statutory reasoning as execution of natural- language 

software, let’s see how example generation is performed in software engineering. The analogous task in this 

field is that of constructing a high-quality test suite. Software tests are useful in many ways including 

validation (i.e., checking whether a program behaves correctly), specification (i.e., writing a test before 

implementing functionality, as in test-driven development [2]), and documentation (i.e., the test code 

demonstrates the behavior of a certain application programming interface (API)).

In software testing, the quality of a test suite is usually measured using criteria that track the diversity of 

program behaviors captured across all tests. The most widely used example is that of code coverage, which 

measures the fraction of source code (often counted at the level of lines of code) exercised across all tests. 

Consider the following Python function which computes the max of two integers:

def max ( a, b): 
  if a > b: return a 
  else : return b

To get full code coverage on this program, one may write two test cases, such that both sides of the conditional 

branch are exercised:

assert max (1 , 2) == 2 # Exercises lines  1 and  2

 assert max (2 , 1) == 2 # Exercises lines  1 and  3
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Coverage analysis for statutory reasoning: Using LLMs, we can use the same principles as in software 

testing to measure the coverage of available examples and to generate more examples by targeting specific 

coverage criteria. For example, Claude 3 Opus correctly produces a list of rules whose conditions were 

satisfied in this example: “§63(b), §63(c)(1), §63(c)(2), §63(c)(7)”. Going further, we can also ask the LLM to 

synthesize examples such that a particular rule is exercised in its coverage. For instance, asking Claude for an 

example such that §63(f)(1)(A) applies but §63(f)(1)(B) does not, produces:

Example 3. Charlie and Diane are married and filing taxes jointly for the year 2018. Charlie was born on 

3/15/1985 and Diane was born on 8/22/1953. In 2018, Charlie and Diane’s adjusted gross income was 

$185,000. Charlie and Diane do not itemize their deductions and do not qualify for any deductions other than 

the standard deduction.

Explanation (as per Claude). “In this scenario, Diane has attained age 65 before the close of the 2018 tax year, 

so §63(f)(1)(B) applies, entitling Charlie to an additional standard deduction amount for his spouse. However, 

Charlie himself has not attained age 65 before the close of the 2018 tax year, so §63(f)(1)(A) does not apply”.

Software mutation testing: In software testing, a criticism of the code coverage measurement of test-suite 

quality is that it only cares about whether certain lines of source code were exercised, but not the meaning of 

those lines themselves. This can result in surprising test outcomes. For example, consider what would happen 

if in the definition of the max  function above, a programmer would make a typographical mistake at Line 2 

and write return 2  instead of return a . Well, it turns out the two tests listed earlier asserting that max(1, 

2) == 2  and that max(2, 1) == 2  continue to succeed, and show 100% code coverage. To identify the 

programmer’s error, we need an additional test that would fail when the typo exists but succeed when the 

program is correct:

assert max (3 , 1) == 3 # Exercises lines  1 and  2 again

This approach of reasoning about test-suite quality as whether it would catch hypothetical programmer errors is 

called mutation testing [9]. The main idea is to introduce small changes in the source code—such as replacing 

return a  with return 2 , called a mutation—and then writing new tests that would distinguish the behavior 

of the original program from that of the mutation. This process can be repeated for dozens or hundreds of 

mutants before a test suite is deemed adequate—research has shown that test suites produced in this way can 

actually help catch real software bugs more reliably than a test suite that is only optimized for coverage [19].

Statutory example generation using mutation testing: We can apply the same principles as in software 

mutation testing to generate examples that not only exercise certain statutory rules, but also distinguish them 

from other incorrect rules. For example, we can ask an LLM to assume that §63(f)(1)(B) is modified to remove 

the second clause, as follows:
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(B) for the spouse of the taxpayer if the spouse has attained age 65 before the close of the taxable year 

and an additional exemption is allowable to the taxpayer for such spouse under section 151(b).

Then, we ask the model to synthesize an example such that §63(f)(1)(B) would apply with the modified rule 

but it would not apply with the original rule. Claude 3 Opus responds to this challenge with the following 

example:

Example 4. Ellie and Frank are married, but they are filing their taxes separately for the year 2018. Ellie was 

born on 5/10/1980 and Frank was born on 2/28/1952. In 2018, Ellie’s adjusted gross income was $75,000 and 

Frank’s adjusted gross income was $50,000. Neither Ellie nor Frank itemize their deductions and they do not 

qualify for any deductions other than the standard deduction.

Explanation (as per Claude). “The modified rule [...] would apply to Frank because he has attained age 65 

before the close of the 2018 tax year. This means Frank would be entitled to an additional standard deduction 

amount for being aged 65 or older, even though he and Ellie are filing separately. However, under the original 

rule, §63(f)(1)(B) would not apply to Frank because it requires not only that the spouse has attained age 65, but 

also that “an additional exemption is allowable to the taxpayer for such spouse under section §151(b).” [...] In 

this scenario, Frank does have gross income, so even though he is over 65, the original §63(f)(1)(B) would not 

apply to him because Ellie cannot claim an additional exemption for him under §151(b).”

Mutation testing thus helps with generating examples that not only exercise specific parts of relevant statutes 

but also provide a basis for reasoning about why certain rules are written in a certain way. The mutation testing 

process can potentially benefit drafters in thinking through various edge cases.

3.2 Interpreting Substitutions via Inlining

Inlining subroutines in software: Software frequently makes use of subroutines for re-using common pieces 

of functionality, such as the max  function defined in the previous section. While this saves space, subroutine 

invocations are associated with a run-time performance overhead. Consider a program expression such as w = 

max(x, x+1) . Executing this code first requires allocating memory for the parameters of the max function, 

namely variables a  and b . These variables are then assigned the values x  and the result of executing x+1  

respectively. The conditional logic inside the definition of the max function is then executed, and the returned 

value is assigned to w .

In many situations, a programming language compiler, which converts source code to machine code for 

execution, performs an optimization called inlining [8]. The basic idea is to replace an expression containing a 

function invocation with the code that implements this function, while performing the necessary substitutions 

of variable names. Often, this allows the compiler to perform further optimizations. In the above example, the 

code w = max(x, x+1)  can be optimized by first inlining the body of the max function as follows:

if x > x +1: w = x else : w = x + 1
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At this point, the compiler realizes that x > x+1  can never be true, and so the whole code can be further 

optimized to just a single line w = x+1 . Executing this final form of the code is much faster than performing 

the subroutine.

Substitutions in AI-driven statutory reasoning: One of the challenges with using LLMs for automated 

statutory reasoning is the cross-application of other sections with substituted values. For example, consider the 

task of determining the standard deduction for taxable year 2025, which requires calculating cost-of-living 

adjustments using hypothetical inflation data provided in Appendix B.1

Example 5. Alice and Bob are married and filing taxes jointly for the year 2025. What is the basic standard 

deduction available to them?

Solving this task correctly requires several considerations:

In our experiments, modern LLMs like Claude 3 Opus or GPT-4 are unable to solve this task correctly even 

with few-shot in-context learning [5] and using chain-of-thought reasoning [14]. There are simply too many 

subroutines, and the LLM’s reasoning inevitably falters by using a wrong value or applying it in the wrong 

place. The end result is almost always incorrect.

Inlining substitutions in statutory reasoning: Taking inspiration from inlining in software optimiza- tion, we 

devised a prompting strategy where we asked the LLM not to calculate the final answer, but just perform one 

1. For joint returns, §63(c)(2)(A)(i) declares the basic standard deduction to be 200% of the value in §63(c)(2)

(C), which is stated to be $3,000.

2. §63(c)(4) applies “adjustments for inflation” to the value in §63(c)(2)(C)), but later §63(c)(7)(B)(i) overrides 

this substitution by declaring that “Paragraph (4) shall not apply” for 2025.

3. For 2025, §63(c)(7)(A)(ii) replaces the value “$3,000” in §63(c)(2)(C)) with the value ”$12,000”.

4. As per §63(c)(7)(B)(ii), the value “$12,000” in §63(c)(2)(C)) is further increased using a cost-of-living 

adjustment as per §1(f)(3), but applying the latter rule itself with a substitution of “2017” for “2016”.

5. §1(f)(3)(A) provides a formula for computing a cost-of-living adjustment using the C-CPI-U value for the 

preceeding calendar year (i.e., 2024) and the CPI for calendar year 2016 multiplied by the ratio of the C-CPI-

U for 2016 to the CPI for 2016 as in §1(f)(3)(B). However, §1(f)(3)(C) comes into play, changing the 

calculation because we are using “2017” instead of “2016”, as determined in the previous step. Now, it 

appears we must only use the C-CPI-U values of 2025 and 2016; no multiplication is needed.

6. Plugging in the values from Appendix B, the adjustment is calculated to be 24.81%.

7. Applying the adjustment and the rounding specified in §63(c)(7)(B)(ii), the value “$12,000” from §63(c)(2)

(C)) is therefore determined to change to “$15,000”.

8. Finally, stepping back to §63(c)(2)(A)(i), the basic standard deduction for a joint return is therefore 200% of 

this adjusted value. So, the result is $30,000.
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step of the substitution and reproduce a modified version of the statute verbatim. For example, after step 2 

above, the LLM will return the text in Appendix A except with §63(c)(4) completely removed. After applying 

step 3 above, the modified version of the statute will say the following in place of §63(c)(2)(C) (emphasis 

added):

Continuing in this way, applying step 5 above changes §1(f)(3)(A) to say (emphasis added):

and so on. Using a modified version of the statute with inlined substitutions in each subsequent step allows the 

LLM to slow down its chain of thought. With this process, Claude 3 Opus is able to correctly solve Example 5.

3.3 Metamorphic Property-Based Testing

Property-based testing in software: Traditional software testing validates the behavior of some piece of code 

on one or more specified inputs (e.g., asserting what max(1, 2)  should produce). But in many cases, we are 

interested in reasoning about generic properties of the code that must hold regardless of what input it is 

provided. For example, we might want to ensure that that the function max(a, b)  produces a result that is 

never less than a  or b , or that the result is exactly equal to either a  or b . These are properties that should 

hold true regardless of the values of a  and b .

Property-based testing, originally invented for testing functions in the Haskell programming language [7], is a 

technique for writing generic tests that express what properties a function should satisfy given any imaginable 

input. We can express the properties of the max(a, b)  function using tests that are parameterized on a  and 

b . In Python, using a library for property-based testing called Hypothesis [17], this is:

@ given ( int () , int ()) # Given any two integers 
def test_max_properties ( a, b): c = max ( a, b) 
  assert c >= a and c >= b # These properties ... 
  assert c == a or c == b # ... should hold

The key idea of property-based testing is to check such generic properties using auto-generated inputs values. 

For testing the properties of max , a property-based testing tool will randomly sample thousands or even 

2. Basic standard deduction

...

(B) $18,000 in the case of a head of household (as defined in section 2(b)), or

(C) $12,000 in any other case.

3. Cost−of−living adjustment

For purposes of this subsection—

(A) In general

  The cost−of−living adjustment for any calendar year is the percentage (if any) by which— ( i ) the 

C−CPI−U for the preceding calendar year, exceeds

  ( ii ) the C-CPI-U for calendar year 2017.
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millions of values for a  and b  and run the above function to check whether the assertions hold. If any 

assertion fails on any input, we know that max  is implemented incorrectly. The test code is also self-

documenting: it expresses the expected behavior of the max function without knowing anything about how it is 

implemented.

Metamorphic testing in software: A special class of property-based testing checks properties that should hold 

across multiple invocations of some program function when the inputs are changed in a specified manner—this 

is called metamorphic testing [6]. For example, we can validate that the max(a, b)  function is monotonic; 

that is, increasing the value of either of its inputs a or b should never produce a result that is smaller than the 

original invocation. Expressed as a property-based test in Python:

@ given ( int () , int ()) # Given any two integers 
def test_max_monotonic ( a, b): 
  assert max ( a + 1 , b) >= max ( a, b) # These properties ... 
  assert max ( a, b + 1) >= max ( a, b) # ... should hold

Again, these properties are simply checked by running the above function ( text max monotonic ) by 

randomly generated values for a  and b  until a violation is found or until is one is satisfied that the property 

appears to hold.

Applications to statutory analysis: The analysis and validation of legal statutes can potentially be automated 

using the key principles of metamorphic property-based testing and combining these with AI- driven 

techniques of interpretation. For example, consider §63(c)(7)(B), which provides adjustments for inflation to 

the basic standard deduction applicable in tax years 2018–2025. One may want to analyze the code to ask: Can 

the basic standard deduction available for single filers ever decrease year-over-year in this period? Perhaps a 

legislator or other stakeholder is interested in understanding the effects of year-over- year deflation on the tax 

code. Answering this question involves not just interpreting the statutes but also reasoning about how they 

would apply in hypothetical edge-case scenarios.

Unfortunately, asking an LLM to analyze general properties of legal statutes directly does not always produce 

accurate results. When directly prompted with the aforementioned question, Claude 3 Opus de- termines that 

“for taxable years beginning after 2018, the $18,000 and $12,000 amounts are increased by a cost-of-living 

adjustment determined under §1(f)(3) [...] Since the adjustment can only increase the basic standard deduction 

amounts [...] the basic standard deduction cannot decrease during the 2018-2025 period” (emphasis added). 

However, it turns out that this is not fully correct.

We can help Claude by expressing our question as a metamorphic property-based test to verify the monotonicity

 of the inflation adjustments—Given any two years X and Y, such that 2018 ≤ X < Y ≤ 2025, and hypothetical 

C-CPI-U values for the correspondingly preceding calendar years Ix and Iy in the numeric range [100, 200], 

calculate D(X, Ix) and D(Y, Iy) respectively, where function D is the computation of basic standard deduction 

for single filers in a given year assuming a given C-CPI-U value for the preceding calendar year; then check 
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whether D(X, Ix) ≤ D(Y, Iy) is true. Now do this for random values of X, Y, Ix, Iy in a loop—in each iteration, 

use the LLM to calculate the inflation adjustment using the inlining technique described in the previous section.

It does not take many iterations to discover that it is indeed possible to violate the stated property. Although the 

adjustments defined in §63(c)(7)(B) and §1(f)(3) do indeed only allow for increases to the basic standard 

deduction value listed in §63(c)(2)(C) (which is “$12,000” in the period 2018–2025), the amount by which this 

value is increased can seemingly decrease year-over-year if there is deflation during those subsequent years. 

Property-based testing can reveal a situation where the monotonicity property is violated: D(2024, 

168.1)=$14,600 and D(2025, 167.0)=$14,500; that is, if there was a hypothetical 0.65% deflation in 2024, then 

the basic standard deduction for single filers in tax year 2025 as computed by §63(c)(2)(C) and §1(f)(3) 

appears to be $100 lower than that computed for the previous year.

3.4 Other Applications of Software Engineering Methods

Once we start treating AI-driven statutory reasoning as a software program analysis problem, we can take 

inspiration from a host of other techniques studied in the field of software engineering.

Delta debugging [22] is a technique for isolating the root cause of a program failure in terms of input data 

(e.g., think of a large file that causes a word processor to crash). The key idea is to repeatedly slice and dice 

the input until we obtain the smallest possible chunk that also reproduces the failure.

Can we perhaps use delta debugging for AI-driven statutory reasoning in order to generate minimal 

examples such that a particular statutory rule applies?

Change impact analysis [1] is a technique for identifying which modules in a software get affected by a 

small patch applied to the program. This can be used for optimizations such as choosing a small subset of 

test cases to run for quick validation purposes instead of spending a lot of time executing the whole test 

suite. The key idea to performing change impact analysis is to first build a directed graph of various program 

modules and their inter-dependencies using both static source code information and dynamic hints from 

previous test executions. The impact of changes can then be identified by following paths through such a 

graph.

Can we perhaps use this technique to identify how proposed changes to statutes (e.g., a bill introduced in 

the legislature) or contracts affect various other provisions and how they may be applied?

Automatic program repair (APR) [16] is a technique for fixing bugs in software. Given a program and a test 

input on which it produces the wrong output, the key idea is to mechanically search over a space of small 

changes to the program such that the test execution results in the correct expected value.

Can we perhaps use APR techniques with LLMs to prototype changes to certain rules or clauses in order 

to achieve a desired interpretation for some given circumstance?
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4. Conclusion
Generative AI has unlocked new ways of automating statutory reasoning and contract analysis. The intri- 

cacies and peculiarities of legalese make it much more suitable to treat statutes and contracts as computer 

programs rather than as natural language databases of information. Consequently, we argue that this prob- lem 

can benefit from the principled application of techniques well-studied in the field of software engineering such 

as code coverage, function inlining, mutation testing, metamorphic property-based testing, and more. We hope 

that this article forms the basis for researchers to investigate further synergies across software analysis and 

computational law.

Appendix A. Excerpt from Internal Revenue Code
In this appendix, we list excerpts from 26 U.S.C. §63, §1, and §151 (as of April 2024) that are provided to an 

LLM for reasoning about tasks described in the article above.

§63. Taxable income defined

…

(b)Individuals who do not itemize their deductionsIn the case of an individual who does not elect to itemize 

his deductions for the taxable year, for purposes of this subtitle, the term “taxable income” means adjusted 

gross income, minus—

(1) the standard deduction,

…

(c)Standard deductionFor purposes of this subtitle—

(1)In generalExcept as otherwise provided in this subsection, the term “standard deduction” means the sum of

—

(A) the basic standard deduction, and

(B) the additional standard deduction.

(2)Basic standard deductionFor purposes of paragraph (1), the basic standard deduction is—

(A) 200 percent of the dollar amount in effect under subparagraph (C) for the taxable year in the case of—

(i) a joint return, or

(ii) a surviving spouse (as defined in section 2(a)),
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(B) $4,400 in the case of a head of household (as defined in section 2(b)), or

(C) $3,000 in any other case.

(3)Additional standard deduction for aged and blind

For purposes of paragraph (1), the additional standard deduction is the sum of each additional amount to which 

the taxpayer is entitled under subsection (f).

(4)Adjustments for inflationIn the case of any taxable year beginning in a calendar year after 1988, each 

dollar amount contained in paragraph (2)(B), (2)(C), or (5) or subsection (f) shall be increased by an amount 

equal to—

…

(7)Special rules for taxable years 2018 through 2025In the case of a taxable year beginning after December 

31, 2017, and before January 1, 2026—

(A)Increase in standard deductionParagraph (2) shall be applied—

(i) by substituting “$18,000” for “$4,400” in subparagraph (B), and

(ii) by substituting “$12,000” for “$3,000” in subparagraph (C).

(B)Adjustment for inflation

(i)In general

Paragraph (4) shall not apply to the dollar amounts contained in paragraphs (2)(B) and (2)(C).

(ii)Adjustment of increased amountsIn the case of a taxable year beginning after 2018, the $18,000 and 

$12,000 amounts in subparagraph (A) shall each be increased by an amount equal to—

(I) such dollar amount, multiplied by

(II) the cost-of-living adjustment determined under section 1(f)(3) for the calendar year in which the taxable 

year begins, determined by substituting “2017” for “2016” in subparagraph (A)(ii) thereof.

 If any increase under this clause is not a multiple of $50, such increase shall be rounded to the next lowest 

multiple of $50.

…

(f)Aged or blind additional amounts
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(1)Additional amounts for the aged The taxpayer shall be entitled to an additional amount of $600—

(A) for himself if he has attained age 65 before the close of his taxable year, and

(B) for the spouse of the taxpayer if the spouse has attained age 65 before the close of the taxable year and an 

additional exemption is allowable to the taxpayer for such spouse under section 151(b).§151. Allowance of 

deductions for personal exemptions

§1. Tax imposed

…

(f)Phaseout of marriage penalty in 15-percent bracket; adjustments in tax tables so that inflation will not 

result in tax increases

(1)In general

Not later than December 15 of 1993, and each subsequent calendar year, the Secretary shall prescribe tables 

which shall apply in lieu of the tables contained in subsections (a), (b), (c), (d), and (e) with respect to taxable 

years beginning in the succeeding calendar year.

…

(3)Cost-of-living adjustmentFor purposes of this subsection—

(A)In generalThe cost-of-living adjustment for any calendar year is the percentage (if any) by which—

(i) the C-CPI-U for the preceding calendar year, exceeds

(ii) the CPI for calendar year 2016, multiplied by the amount determined under subparagraph (B).

(B)Amount determinedThe amount determined under this clause is the amount obtained by dividing—

(i) the C-CPI-U for calendar year 2016, by

(ii) the CPI for calendar year 2016.

(C)Special rule for adjustments with a base year after 2016

For purposes of any provision of this title which provides for the substitution of a year after 2016 for “2016” in 

subparagraph (A)(ii), subparagraph (A) shall be applied by substituting “the C-CPI-U for calendar year 2016” 

for “the CPI for calendar year 2016” and all that follows in clause (ii) thereof.

(4)CPI for any calendar year
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For purposes of paragraph (3), the CPI for any calendar year is the average of the Consumer Price Index as of 

the close of the 12-month period ending on August 31 of such calendar year.

…

(6)C-CPI-U For purposes of this subsection—

…

(B)Determination for calendar year

The C-CPI-U for any calendar year is the average of the C-CPI-U as of the close of the 12-month period 

ending on August 31 of such calendar year.

…

§151. Allowance of deductions for personal exemptions

(a)Allowance of deductions

In the case of an individual, the exemptions provided by this section shall be allowed as deductions in 

computing taxable income.

(b)Taxpayer and spouse

An exemption of the exemption amount for the taxpayer; and an additional exemption of the exemption 

amount for the spouse of the taxpayer if a joint return is not made by the taxpayer and his spouse, and if the 

spouse, for the calendar year in which the taxable year of the taxpayer begins, has no gross income and is not 

the dependent of another taxpayer.

Appendix B. Inflation data for cost-of-living adjustments
The following table provides (hypothetical) values for the Chained Consumer Price Index for All Urban 

Consumers (C-CPI-U) for calendar years 2017–2024, calculated using the averaging methodology in §1(f)(6)

(B).

Year Value

2017 138.2

2018 141.0

2019 143.2
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