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We formalize predictive optimization, a category of decision-making algorithms that use machine
learning (ML) to predict future outcomes of interest about individuals. For example, pre-trial risk
prediction algorithms such as COMPAS use ML to predict whether an individual will re-offend in the future.
Our thesis is that predictive optimization raises a distinctive and serious set of normative concerns that render
it presumptively illegitimate. To test this, we review 387 reports, articles, and web pages from academia,
industry, non-profits, governments, and modeling contests, and find many real-world examples of predictive
optimization. We select eight particularly consequential examples as case studies. Simultaneously, we develop a
set of normative and technical critiques that challenge the claims made by the developers of these applications—
in particular, claims of increased accuracy, efficiency, and fairness. Our key finding is that these critiques
apply to each of the applications, are not easily evaded by redesigning the systems, and thus challenge the
legitimacy of their deployment. We argue that the burden of evidence for justifying why the deployment of
predictive optimization is not harmful should rest with the developers of the tools. Based on our analysis,
we provide a rubric of critical questions that can be used to deliberate or contest the legitimacy of specific
predictive optimization applications.

Fig. 1. Our categorization of algorithmic decision-making systems. We focus on predictive optimization, the
intersection of the three criteria.
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1 INTRODUCTION

What can gowrongwith automated decisionmaking? It depends onwhat exactly is being automated.
In some cases, such as welfare benefits allocation, algorithms automate the process of applying a
pre-existing decision-making rule. The software is designed to replace a bureaucrat, where both are
expected to apply the same policy. In other cases, say resume screening, the algorithm automates the
process of developing a decision-making rule in the first place. It typically uses machine learning to
create a model that sorts or classifies new candidates based on patterns in historical examples. While
automation is involved in both cases, the normative issues at stake are quite different. Unfortunately,
distinct types of automation have tended to be conflated to the detriment of policy debates.
We focus on a subset of the second type discussed above, specifically where (1) machine learning is
used to (2) make predictions about some future outcome (3) pertaining to individuals, and those
predictions are used to make decisions about them. We coin the term “predictive optimization” to
refer to this form of algorithmic decision-making,1 because the decision-making rules at issue have
been explicitly optimized with the narrow goal of maximizing the accuracy with which they predict
some future outcome. This constrasts with manual approaches to developing decision-making rules
that may involve a more deliberative process incorporating a range of considerations and goals.
Predictive optimization can be enticing. It promises to relieve policymakers ofmany of the difficulties
in developing decision-making rules that help to realize their goals; whatever achieves the greatest
possible accuracy in predicting a concrete outcome of interest is what the policy should be. It also
seems to offer a more compelling and explicit justification for decision-making rules: they do not
merely reflect the considered judgment of policymakers, which others might call into question as
subjective; they instead seem to reflect objective patterns in the real world, which stand on their
own. Presented in this manner, predictive optimization seems to remove politics from policymaking.
But in practice, predictive optimization often falls short of this ideal. Developers face a series of
obstacles starting with how to make a problem amenable to predictive optimization: what should
be predicted, how should this prediction inform a decision, and how does this decision help to
advance the goals of the decision maker? How should one assemble the necessary data to make
accurate and reliable predictions, ensure equally accurate predictions across the population, and
achieve acceptable levels of accuracy given fundamental limits to prediction? And of course there
are concerns around transparency and accountability: machine-learned models can be far more
complex than those crafted by hand, defying meaningful inspection, and can be presented as an
objective basis upon which to make decisions, concealing the many ways in which human judgment
entered the process of developing them.
The thesis of this paper is that predictive optimization fails on its own terms. Drawing on a
review of past controversies, we assemble a set of seven objections, mirroring the questions raised
in the previous paragraph. By connecting these to the anatomy of predictive optimization, we
argue that they are inherent and cannot be evaded without losing the essence of what makes the
approach appealing in the first place. Empirically, we analyze eight case studies and show that
there is either concrete or partial evidence that each of these objections applies to each of the case
studies. Our critiques are either specific to predictive optimization or manifest distinctly compared
to other approaches to automated decision-making (i.e, automating pre-existing rules, and machine
learning of past decisions made using human judgment). For this reason, the category of predictive
optimization warrants separate and careful treatment.

1The term is also introduced in the textbook on fairness and machine learning [14]. It was written simultaneously with this
paper and shares two authors.
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Individually, each of our critiques can threaten the perceived appropriateness of relying on predictive
optimization; as a bundle, they severely undermine the legitimacy of any decision-making process
based on predictive optimization. Our findings thus also serve as a diagnostic for past failures—
why systems based on predictive optimization were deployed in various real-world domains but
consequently discarded.
Finally, we enumerate specific questions that can help determine whether it is reasonable even
to attempt to adopt predictive optimization for any given application. So far, civil society has
had the burden to show that these systems are harmful. We instead suggest that for predictive
optimization, the developers and decision-makers deploying these systems should have the burden
of justifying why their tools are not harmful. Developers who cannot furnish satisfying answers to
these questions should not be permitted to move forward with their proposals.
Illustrative example: driving license authorization based on risk prediction. Teenagers in
many U.S. states can drive at age 16 if they pass a driving test. Teen drivers are the most dangerous
of any age group. More generally, teenagers are known to engage in risky behaviors. To decrease
accidents without raising the age requirement, the fictional state of West Dakota decides to use
predictive optimization. There is no longer an age limit, but those applying for a license must pass
not only a driving test but also a risk evaluation. This is a statistical model trained on the relationship
between drivers’ attributes and accidents, and predicts the probability that the applicant will be
involved in an accident in the next year if granted a license. The state expects to cut accidents
among teen drivers by 15% while in fact increasing the number of licensed teens by 10%.
The system does manage, initially, to cut the number of accidents and deaths. However, it also has
the following consequences:

• Attributes like residential neighborhood and wealth turn out to be strong predictors of accident
risk. The system thus has a disparate impact along racial and socioeconomic lines.

• People try to game the system by temporarily or permanentlymoving to wealthier neighborhoods.
Property values in those neighborhoods go up even more, exacerbating inequality.

• The data on which the system was trained differs from the target population in many ways,
including that under-16s were not in the training data. Also, since accidents are relatively rare,
the developers used speeding violations as a proxy for risk. Thus, the model doesn’t work as
well as anticipated, and the safety improvement is much lower than expected.

• The inability to know in advance when someone will be eligible to drive causes chaos among
teens’ families — parents can no longer plan a vehicle purchase ahead of time or contemplate a
move to a residence that necessitates a drive to school.

• The risk evaluation acquires social status over time. Those who pass it internalize the idea that
they are safe drivers and respond with risk compensation behavior, nullifying the safety gains
that were initially achieved.

• In contrast, those who fail the risk evaluation are stigmatized and bullied. They have no way of
understanding what led to the denial—they have been told that the model uses a broad spectrum
of data about their lives to predict risk, including behavior at school. While they can appeal, they
cannot do so effectively since they lack an explanation of the decision.

It seems obvious that predictive optimization for driving license authorization is a bad idea, because
the kinds of unintended consequences described above are easy to imagine, and the promised gains
erode quickly. We argue that most other applications of predictive optimization are no different; if
they don’t seem as obviously problematic, it is simply because we have grown accustomed to a
world in which they exist and have come to accept their drawbacks as the price of efficiency.
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Predictive policing. Decides geograph-
ical areas where police should be de-
ployed.

PredPol ✓ ✗ ✓ ✗ Decisions are not made
about individuals.

Welfare allocation. Automates hand-
coded rules for deciding whether an ap-
plicant is eligible for a public service,
such as Medicaid.

Indiana
welfare
eligibility

✗ ✓ ✗ ✗ Decisions are not made us-
ingML. Decisions do not pre-
dict the future.

Automated essay grading. Uses past
decisions by human graders to learn de-
cision rules for grading.

TOEFL ✓ ✓ ✗ ✗ Decisions use past judg-
ments instead of predicting
future outcomes.

Traffic prediction. Uses information
about current traffic to predict estimated
time of arrival.

Google
Maps

✓ ✗ ✓ ✗ Predictions are about route
timings rather than an indi-
vidual’s outcomes.

Pre-trial risk prediction. Uses past
data about individuals to predict future
arrests or failure to appear in court.

COMPAS ✓ ✓ ✓ ✓ Satisfies all three criteria for
predictive optimization.

Table 1. Positive and negative examples to illustrate the definition of Predictive Optimization. An example is
considered predictive optimization only if it satisfies all three criteria: it uses ML, it takes decisions about
individuals, and the target variable for the ML system is a future outcome of interest.

2 PREDICTIVE OPTIMIZATION IS A DISTINCT AND IMPORTANT TYPE OF
ALGORITHMIC DECISION MAKING

2.1 What is predictive optimization?

Our definition of predictive optimization has three key characteristics: (1) uses machine learning,
(2) predicts future outcomes, and (3) makes decisions about individuals based on those predictions.
To build an intuition for what constitutes predictive optimization, consider four hypothetical
algorithms for college admissions.

(1) A hand-coded set of rules. The college admits applicants with a test score above a threshold
and participation in at least one extracurricular activity. In Figure 1, this algorithm falls under
“automating existing rules” [14]. It is not predictive optimization because it does not use ML.

(2) An ML model trained on the past decisions made by admissions officers, who each incorporated a
range of explicit and implicit factors into their decision. In Figure 1, this algorithm falls under
“automating judgment” [14]. It is not predictive optimization because it doesn’t try to predict a
future event, and rather tries to mimic past decisions and reflect their judgments.

(3) An ML model to rank high school by predicted college performance, and admitting students from
certain high schools based on this ranking. Once again, this is not an example of predictive
optimization, because it does not take decisions about individuals.

(4) An ML model to predict the GPA of each applicant at the end of their first year of college based
on the data in their application, the goal being to select applicants who have a high chance of
success as measured by GPA. This, finally, is an example of predictive optimization.
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To be clear, we do not say that algorithms which fall outside these criteria are all legitimate.
Rather, we want to highlight the particularly distinctive normative and technical concerns raised
by applications of predictive optimization. Methodologically, predictive optimization serves as an
“ideal type” [188]. This allows us to critique it as an abstract type of automated decision-making
system and use these critiques to analyze concrete examples of predictive optimization. There are
many ways in which the boundaries we have defined may blur in practice. Some ML models may be
so simple as to resemble hand-coded rules. The predicted score may be given to a human-decision
maker, who uses it as one of several factors to make the decision. The more closely an application
resembles our definition, the more strongly our analysis applies.
Our hypothesis is that the category of predictive optimization is coherent enough that the same
set of critiques can be levied against any application meeting the definition. At the same time, our
criteria remain general enough such that they include a large number of real-world applications, as
we show in Section 2.3. Table 1 provides examples of applications and clarifies where each falls
under our definition.

2.2 What makes predictive optimization so compelling?

Predictive optimization has generated so much excitement and has been deployed so widely be-
cause it has many seemingly attractive characteristics—both in terms of cost and justice [163]. To
understand why it is so compelling, we must ask what it is used in place of. Predictive optimization
promises to improve on each of the two main traditional ways of making decisions: bureaucratic
rules and human judgment.

Bureaucratic rules. Johnson and Zhang [94] argue for the superiority of predictive optimization
over bureaucratic rules (they call these algorithmic prioritization and categorical prioritization
respectively). Their paper is limited to government programs, but the private sector also has
examples of categorical prioritization, such as organ allocation [189].2 They describe the typical
process of developing bureaucratic rules using the example of a government welfare program:

• There is a vague and generally agreed upon sense on the goals of the process, e.g., to offer
assistance to those who are “deserving.”

• The decision-makers select attributes that they intuitively think are relevant to the decision:
income, age, number of dependent children, and criminal history.

• The attributes are discretized into categories: for instance, households are categorized as “in
poverty” or not based on a threshold income.

• The attributes are combined using boolean logic to create the policy, e.g., a household qualifies if
and only if it is in poverty and has some minimum number of members.

Johnson and Zhang point out many drawbacks of this approach, which we group into two main
clusters. First, goals are rarely made precise, and policies often fail to meet the putative goals
because their efficacy is never tested. This can be seen by how interest groups may succeed in
getting their favored category added to the policy (e.g., financial assistance for veterans). Second,
the resulting criteria tend to be crude because relevant attributes may not be considered, continuous
variables may be thresholded, and boolean logic is not very expressive, especially compared to
machine learning.

2More common is categorical prioritization to set eligibility requirements, such as minimum job qualifications, for a decision
that is then made by human judgment.
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This is an insightful analysis. Still, it is worth considering how serious or inevitable these drawbacks
actually are. For example, for the crudeness of categorical prioritization, it turns out that across a
range of tasks, well-designed numerical formulas can achieve an essentially equivalent accuracy to
machine learning models while remaining straightforward to execute by hand [96]. And the lack of
testing of policies is not an inherent limitation. Admittedly, there is a reason that policy evaluation
is rarely carried out: it often involves causal inference and tends to be slow and expensive, yielding
incomplete knowledge.
This fact motivates another notable paper that advocates for predictive optimization. Kleinberg
et al. [100] argue that there is a large class of policy problems that don’t require causal inference
and are hence suitable for solving with machine learning using observational data. They call these
“prediction policy problems”; their definition is similar to predictive optimization. Their illustrative
example is as follows: you want to decide whether to carry an umbrella on a given day. Since the
decision to use an umbrella doesn’t impact the probability of rain, there is no causal inference
required to make this decision. The only thing you need is a prediction about whether it will rain.
Their core argument is that decision problems that don’t require causal inference are common and
important. But there are few problems that have clear and obvious interventions once a prediction
is made. That is, few real-world problems fall into the umbrella category. In our analysis, we have
encountered no problems where causal modeling is unnecessary to find the best intervention, and
many problems where it is clearly necessary (which includes problems that Kleinberg et al. briefly
list as examples of prediction policy problems). We call this the “intervention vs. prediction” issue.
In Appendix A, we present a detailed analysis of their main example: deciding whether to perform
knee or hip replacement surgery.
Human judgment. The second main approach to traditional decision-making is human judgment:
think of a judge making a pre-trial detention decision based on experience and intuition. Of course,
judges are constrained by many bureaucratic rules, which illustrates that the boundary between
the two categories is blurry. But we will continue to treat them as separate for pedagogical clarity.
Predictive optimization promises dramatic advantages over human judgment as well. Human
judgment is noisy and hence inaccurate [47], costly, biased, and arbitrary in the sense that it doesn’t
require even the fuzzy articulation of goals and values that the bureaucratic rule-making process
requires. In contrast, predictive optimization promises the consistency and efficiency of automation,
and objectivity in the form of a clear target variable. This objectivity in turn promises transparency
of goals and accuracy of predictions. Predictive optimization is also claimed to reduce or eliminate
bias — both because of the seeming objectivity of the target variable, and because biased algorithms
are claimed to be easier to fix than biased humans [125].
What about automating judgment by learning a model from past judgments? It inherits all of the
limitations of human judgment except for inconsistency. Training on biased human judgments will
result in a biased model. The need for training data from humans means that it cuts down on but
does not eliminate the cost of human decision making. Automated judgment can be more accurate
than human judgment, but is still limited in accuracy due to its training data. For example, there
may be patterns in medical images that are predictive of disease and are detectable by automated
systems but not by medical experts. Since these samples will be labeled negative for disease by
human experts, automating judgment won’t pick up on them. However, predictive optimization
uses the correct ground truth based on future disease progression.
An idealized version of predictive optimization does indeed have most of these attractive qualities.
But we’ll question whether these conditions that are ideal for the algorithm ever arise in real use

Electronic copy available at: https://ssrn.com/abstract=4238015



8 Angelina Wang, Sayash Kapoor, Solon Barocas, and Arvind Narayanan

Fig. 2. An overview of our methods. From a corpus of 387 articles, we select eight consequential applications of
predictive optimization for our case study (Section 2.4). We simultaneously select seven critiques of predictive
optimization that arise as a developer is designing, creating, and deploying predictive optimization (Figure 4).
We present the completed matrix in Table 2.

cases, and identify limitations that arise in realistic applications. We will also discuss other critiques
that tend to be left out in the usual arguments for predictive optimization we have described.

2.3 Predictive optimization is widely deployed

So far, we have discussed the differences between predictive optimization and other decision-
making processes which make it a conceptually distinct category. But why is predictive optimization
important to study?
There are two reasons. First, predictive optimization is already deployed widely in consequential
applications. Second, it suffers from distinct normative and technical shortcomings. We spend the
rest of this section discussing our collection of consequential examples of predictive optimization
and address the drawbacks of predictive optimization in the next (Section 3).
To find real-world examples of predictive optimization, we conducted a systematic search of
literature from the following sources:

• News reports: We read articles in the top 100 search results for algorithm in the New York
Times; sorted by relevance. To minimize U.S.-centricity, we also read articles from the first search
engine results page for algorithm on Rest of World (an international news website that reports
global tech stories).

• Academic papers: We read papers published in NeurIPS 2021, a prominent ML conference. We
filtered relevant papers based on their title and abstract to include the ones that were related to
real-world applications.

• Kaggle competitions and datasets: We read descriptions of Kaggle3 competitions with a
reward of > $50, 000, as well as the top 70 Kaggle datasets sorted by popularity.

3Kaggle (www.kaggle.com) is a data science website that hosts competitions and datasets for predictive modeling.
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Fig. 3. Eight consequential applications of predictive optimization.

We also looked at an industry report [148] and two reports from non-profits [72, 95] to make sure
that the applications mentioned in these reports were present in our database. This process left us
with 47 potential examples of predictive optimization. Additional details about our methods and
the complete list of applications are included in Appendix C.

2.4 Eight case studies of predictive optimization

We narrowed down the list of 47 examples to eight particularly consequential deployments of
predictive optimization for our case studies in Section 3. We evaluated examples based on their
severity (how important the decision is in an individual’s life) and proliferation (howwidespread the
decision-making algorithm is). We limited our case studies to applications that are still in use and
have sufficient documentation available for us to make informed critiques. The eight applications
are outlined in Figure 3.
We compiled claims made by the developers of these systems and found three common claims:
high accuracy in predicting the outcome, fairness across demographic groups, and efficiency gains
by reducing the time spent by human decision-makers (thereby reducing costs).
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Fig. 4. Seven limitations of predictive optimization, mapped to the specific modeling activities that give rise
to them, and brief explanations of how the automating judgment approach is different.

For instance, Hirevue’s front page displays “Fast. Fair. Flexible. Finally, hiring technology that
works how you want it to.” Upstart claims that “future versions of the model will continue to be fair,”
“Upstart’s model is significantly more accurate than traditional lending models,” and that 73% of
their loans are fully automated. These claims are used as selling points for attracting customers—for
example, Optum has a document called a “sell sheet” where they list attributes such as “cost, risk
and quality.” We discuss developers’ claims in more detail in Appendix B.

3 RECURRING SHORTCOMINGS OF PREDICTIVE OPTIMIZATION

In this section, we compile a set of seven critiques of predictive optimization. Our aim is to
outline a set of objections inherent to predictive optimization that cannot be easily fixed using a
design or engineering change. We generate our critiques by walking through the modeling steps
involved in developing and deploying a predictive optimization application, as shown in Figure 4.
Since all applications of predictive optimization involve these modeling steps, it suggests that the
shortcomings we observe may apply to all of them.

3.1 Intervention vs. prediction: good predictions may not lead to good decisions

The bedrock assumption of predictive optimization is that optimal predictions lead to optimal
decisions—or at least good decisions. However, since the algorithms are created using observational
data, they do not directly optimize the impact of the resulting interventions [41, 64].
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One gap between predictions and interventions is due to what is called treatment effect hetero-
geneity. Some individuals might be more likely to respond to an intervention compared to others,
but this is not modeled by the algorithm. For example, one student may be predicted to be highly
likely to drop out of school, but this may be because they are planning to move to a different city.
An intervention aimed at preventing this student from dropping out would be much less effective
compared to another student who might be at risk of dropping out due to underperformance.
Another gap is that decisions based on predictions might themselves affect the outcomes being
predicted. For example, a higher bail amount—based on predicted recidivism—can increase the
likelihood of recidivism [79]. In credit, a loan premium decided using a predictive model can
negatively affect the probability of repayment. Similarly, offering different types of repayment
options can change the default rate [4]. However, these effects are not modeled within the prediction
problem in standard supervised ML [144].
While there are methods being developed to use machine learning to causally model and optimize
decision making [10], they would require additional assumptions and/or additional data collection.
Such data can often be context-specific; the plug-and-play promise of predictive optimization would
no longer apply. Further, to conduct experiments to measure the effects of interventions, developers
would also need to wait for years for relevant outcomes to materialize. For instance, evaluating
loan repayment predictions would require information about whether the applicant defaulted after
years of holding the debt.
Yet another gap is that the aggregate of individually optimal predictions may not lead to a globally
optimal intervention. For instance, in a sales job, a company could prioritize hiring people based
on predictions of how many sales they would close. But that doesn’t account for being polite to
customers or getting along with coworkers [20], which can have a long-term detrimental impact on
the overall sales of the company even if the individual employee performs well. This is colloquially
known as the “No Asshole Rule” [174].
Some types of interventions are more amenable to a predictive formulation than others. This
restricts the scope of interventions and leads decision-makers to exclude some that could lead
to more just outcomes. For example, in criminal justice, incapacitation is more amenable to a
predictive formulation compared to rehabilitation [13, 176]. Alternative interventions which could
decrease chances of failure to appear in court [67] are not explored in favor of a predictive approach
to incapacitation. In the extreme case, the commercial pressures that favor predictive models warp
the public understanding of the goals of the system [13, 57].

3.2 Target-construct mismatch: it’s hard to measure what we truly care about

A construct is the intended outcome that the developer wants to predict. However, it is often
not directly observable. Instead, the developer chooses another variable in the data that stands
in as a proxy for the construct of interest. This is called the target variable.4 In pre-trial risk
assessment, the construct is the risk of crime or failure to appear in court if released. But crime
is not directly observable, so proxies such as arrests or crime reports are used [12, 58]. Therefore,
accurate prediction of re-arrest does not necessarily mean accurate prediction of re-offense. Notably,
this target variable is likely to be systematically biased against Black people due to over-policing
and other biases [102].

4The target variable is known by many names: the dependent variable, the outcome variable, the response variable, or the
output variable.

Electronic copy available at: https://ssrn.com/abstract=4238015



12 Angelina Wang, Sayash Kapoor, Solon Barocas, and Arvind Narayanan

In hiring, the construct is job performance and the target variable is an industry-dependent per-
formance metric. For example, it could be the number of sales for a sales representative, one-year
retention for flight attendants, and average client rating for tutors [108]. Job performance is fa-
mously difficult to measure [27, 154, 158], with single performance metrics receiving criticism due
to the neglect of aspects such as employee behavior, e.g., politeness to customers [128] or helping
their coworkers [20]. Ratings are frequently subjective [83], and specifically in the case of tutor
quality ratings, student ratings of their instructors are notoriously biased [60]. All of these make
efforts to predict job performance based on past data suspect.
In addition to the construct not being measurable in practice, mismatches can arise due to many
other reasons. The goals of the developer may not align with that of society. For instance, the
police may want to maximize the number of speeding tickets while society may want safer roads.
The goals of the developer may not be precisely articulated. For example, abstract concepts like
performance do not have a concrete definition. Finally, the goals of the developer may be more
multi-faceted than a single target variable can capture. For example, holistic college admissions
consider many different criteria.
We can rarely acquire a direct observation of the construct of interest, so to an extent, there
will always be a mismatch between the target of the prediction (the measurable proxy) and the
construct that it supposedly measures [92]. Target-construct mismatch contradicts developers’
claim of accuracy, because no matter how good a model may be at predicting a target variable, if
the target variable deviates from the construct of interest, then any claims about the accuracy fall
short due to error in measurement. Additionally, if the mismatch is systematically correlated with
a demographic attribute, such as race, then developers’ claims of fairness are also violated.
Unobservable constructs are familiar to social scientists, who frequently use proxies to estimate
their construct of interest. However, the critical difference is that the prediction setting involves
working with individuals rather than aggregates, and thus the mismatch between construct and
target can be far more consequential.

3.3 Distribution shifts: the training data rarely matches the deployment setting

ML methods are notorious for degradation of predictive performance under even slight changes in
the distribution [71, 103]. When the distribution of data on which an ML model is trained is not
representative of the distribution on which it will be deployed, model performance suffers. Thus,
claims made about the model’s performance might not apply to the real-world settings where it is
deployed.
Distribution shifts can arise in many ways. The most common is that the training population is
different from the target population in important ways, e.g., due to differences in geography. For
example, the Ohio Risk Assessment System (ORAS), developed and validated using a small sample
of defendants in Ohio, is used nationwide [38, 106]. In contrast, The Public Safety Assessment (PSA)
tool uses a population of 1.5 million cases from 300 U.S. jurisdictions. This would seem to solve the
problem, but that is still not the case. In some of the jurisdictions in which it is used, the base rate
of violent recidivism is lower than the base rate in the tool’s training data by more than a factor of
10. This results in risk thresholds for pre-trial detention that are severely miscalibrated, resulting
in over-detention [39].
There may be situations when we only have access to data from a subset of the population, and
collecting data on the entire population is hard or impossible. In this case, data from a non-
representative subset of the population is used to train a model that will then be deployed on the
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entire population of interest. This scenario is common when observational data is used: often the
distribution shift arises becuase only data on successful candidates is available. Upstart’s model only
has access to loan default data about those that were given a loan in the first place [11]; HireVue
trains their models based on a custom assessment of people already hired by the company, which
is a non-random set of the population [85, 123]; Alleghany Family Screening Tool (AFST) is trained
using data about public assistance, such as therapy and child welfare assistance [61], meaning
that it only has access to information about those accessing public assistance, and excludes data
from more well-off people who have access to private insurance and do not have to rely on public
welfare.
A related issue is that developers may only be able to access data under an existing intervention. In
these cases—such as data that only exists under the present criminal justice system [12]—we cannot
fully evaluate the impact of introducing a decision-making algorithm in the absence of previous
interventions [41]. For example, an algorithm used for predicting hospital readmission learned
that patients with Asthma were at lower risk of readmission [28]. This was because patients with
Asthma were more likely to be placed in an Intensive Care Unit (ICU), where they received better
care which reduced their risk of readmission. Similar pitfalls are likely to arise in a vast majority of
real-world applications. Chances are if a problem is important enough to deploy an algorithm to
improve outcomes in a real-world setting, then we also already have an existing intervention in
place for the problem (such as, sending patients with Asthma to the ICU).
Another type of selection bias is when the prediction influences the target outcome being measured
and therefore creates a feedback loop [144]. For example, consider a hiring algorithm that does a
poor job at assessing applicants that belong to a specific group because the training data includes
few examples of people from that group. If members of this group decide to stop applying to
employers who use this algorithm—perhaps because they know they are not likely to be assessed
accurately—then the algorithm has even fewer examples from this population. In this case, the
decision-making algorithm affects the underlying distribution being modeled. In other words,
decisions cause drift.5

In the presence of selection bias, the performance of a decision-making algorithm cannot be
measured accurately. In each of the above cases, the lack of representative data means that we cannot
evaluate the performance of models trained using this data—any estimate of model performance is
based on data that systematically differ from the real-world setting of interest.

3.4 Limits to prediction: social outcomes aren’t accurately predictable, with or without
machine learning

Predictive systems can only meet their goals, such as minimizing crime or hiring good employees,
to the extent that their predictions are accurate. But there are many reasons why prediction is
imperfect: both practical ones, such as limits to the ability to observe decision subjects’ lives, and
more fundamental ones, such as the fact that crime is sometimes a spur-of-the-moment act that
can’t be accurately predicted in advance.
There is accumulating evidence of strong limits to the prediction of individual-level outcomes
in social systems: that is, events that are the result of social processes, compared to relatively
deterministic physical or biological systems [53, 162, 192]. For example, Dressel and Farid [53]

5This is related to our intervention vs. prediction critique in Section 3.1. However, while here we focus on the effect of
a decision on the distribution being modeled (and therefore on future decisions), earlier, we considered the effect of the
decision on the outcomes of the individual about whom the decision was being made.
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demonstrate that COMPAS is no more accurate or fair than predictions made by human participants
with little or no criminal justice expertise. Further, they find that a simple linear model that only
received two features is nearly equivalent to COMPAS, which had access to 137 features. Leutner
et al. [108] share HireVue’s predictive AUC across a range of industries, and report values from
.68-.81, noting with no evidence the normative claim that “AUC values above .60 suggest the
model is able to distinguish between two classes fairly well.” Generally, our knowledge of the
predictive performance of applications is patchy, due to a severe lack of transparency from the
companies [160].
Distribution shift, discussed in the previous subsection, is also an important reason for limited
accuracy. Upstart acknowledges that “There is no assurance that our AI models can continue to
accurately predict loan performance under adverse economic conditions” [180]. In general, these
models have been shown to perform poorly on predicting out-of-time samples [99].
Poor predictive performance undermines a common claim by developers of predictive optimization—
high accuracy. These claims support the decision-making institution’s ability to achieve its stated
goals, for instance, protecting children at risk of maltreatment. Clearly, if the predictions were
random, people would lose trust in the institution. But it is not clear what precise level of accuracy
is acceptable, and this would differ between domains and applications based on many factors. What
does seem to be clear is that the actual accuracy of many of these models is widely misperceived,
thus misinforming this debate. For most applications, there is no consensus on what constitutes
acceptable performance, and how the relative costs of false positives and false negatives should be
weighed [170]. Given that people tend to trust algorithmic predictions over human judgment [111],
accuracy numbers may place unfounded trust in inaccurate systems. Many decision-making systems
were shut down once their actual deployed performance was revealed publicly by researchers or
journalists [118, 157, 191].
It is not just the quantitative limits to prediction that matter, we also need to understand the reasons
for poor accuracy, as different reasons have different moral consequences. Hardt and Kim [81]
show that models in many domains are hardly more accurate than baseline models based purely
on the individual’s circumstances (as opposed to factors that can be attributed to the individual’s
agency). Lum et al. [112] show that models that predict failure to appear have large individual-level
uncertainties in their risk predictions. The true risk and predicted risk often differ substantially.
In other words, it’s not just that these models aren’t very good at achieving their instrumental
aims; they also violate fairness to individuals by putting defendants with the same true risk in very
different risk groups.
Limits to prediction have led to past failures of predictive optimization. Epic, one of the largest
healthcare tech companies in the U.S., released a plug-and-play sepsis prediction tool in 2017. When
the tool was released, the company claimed that it had an AUC between 0.76 and 0.83. Over the
next five years, the tool was deployed across hundreds of U.S. hospitals. But a 2021 study found
that the tool performed much worse: it had an AUC of 0.63 [191]. Following this study and a series
of news reports [157], Epic stopped selling its one-size-fits-all sepsis prediction tool.
As an example of a company that went a different way, consider FICO. After finding that more
complex ML models performed only slightly better than simpler regression models, it decided in
favor of the latter because of interpretability [66]. Still, traditional credit scores still suffer from a
number of issues [17, 36]—showing that interpretability on its own is not a panacea.
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3.5 Disparate performance between groups can’t be fixed by algorithmic interventions

Disparate performance refers to differences in performance for different demographic groups. No-
tably, we are not referring to differences that result from data imbalances that could be conceivably
fixed through more and better data, but rather, core problems such as the fairness impossibility the-
orems which state that when two groups have different base rates, any calibrated algorithm cannot
ensure equal false positive rates for both groups [31, 101]. For example, Angwin et al. [7] highlight
the disparity in false positive rates in COMPAS, which are unavoidable due to the prioritization of
the alternative fairness metrics of predictive parity, accuracy equity, and calibration [51, 53]. The
numerous statistical fairness criteria each capture different moral dimensions of fairness—albeit
distantly—so the impossibility theorem cannot be dealt with by declaring one metric to be the
correct one.
We interpret these impossibility theorems as formalizing the well-known fact that a decision-
making system that only considers people’s current degree of similarities and differences, without
accounting for the reasons behind those differences or histories of prejudice, will, in turn, be
unjust. It may perpetuate or amplify those existing inequalities, and the cost of errors may fall
disproportionately on marginalized groups. Due to the limits to prediction discussed above, the
frequency of errors tends to be high.
Developers of most predictive optimization tools make claims about fairness, but rarely articu-
late how they define fairness or justify that choice. Fairness is a political question with many
stakeholders, and there is no unbiased algorithm; only trade-offs. It is even rarer for developers or
decision-makers to employ a deliberative process with input from all stakeholders including, most
significantly, decision subjects [153]. After all, such deliberative processes undercut the efficiency
gains that developers of predictive optimization tools tend to promise. Further, calling an automated
decision-making system fair based on satisfying a statistical notion of fairness is misleading, since
the public might equate claims of fairness with a more expansive definition. A system that is fair
in a statistical sense may nonetheless perpetuate, reify, or even amplify long-standing cycles of
inequality.
The relationship between predictive optimization and disparate performance is complex. On the one
hand, the formalization required by predictive optimization makes discrimination more apparent
[3]. The COMPAS investigation afforded a new lens through which to understand the structural
racism of the criminal justice system.
On the other hand, the rigidity imposed by predictive optimization makes effective fairness interven-
tions harder. Human decision-making is messy, but one upside is that it combines decision-making
with deliberation about bias and values. This deliberation is important since fairness requires
continual consensus building. The framework of algorithmic fairness presumes that consensus has
been reached and scales up a single conceptualization of fairness, thus choking off one avenue for
deliberation.
Predictive optimization puts the focus of interventions on the technical subsystem. Some have
argued that biased algorithms are easy to fix [125], and there is a large literature on algorithmic
interventions. But these interventions that mitigate statistical disparities do nothing to change the
underlying conditions that gave rise to the disparities in the first place. Our view is that statistical
fairness criteria are only diagnostics: the symptoms of injustice, not the disease.
The best intervention in a given situation might lie outside of the algorithm: outreach to high
schools in the case of college admissions; companies investing in strengthening HBCUs in the case
of workplace racial diversity; combatting sexual harassment in the workplace to improve gender
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diversity; helping defendants show up to court rather than punishing them based on a predicted
failure to appear; reconsidering money bail altogether. Such deeper interventions conflict with one
of the selling points of these tools, which is technological debiasing.
Disparate performance has led to predictive optimization tools being recalled or abandoned. For
example, the U.S. state of Oregonwas building a tool similar to AFST. The state recalled the tool [146]
after critiques of AFST were published [88], in particular, due to racial bias in the algorithm’s
decisions.

3.6 Providing adequate contestability undercuts putative efficiency benefits

Incorrect decisions are inevitable in practice in decision-making systems. Errors can arise in every
step of an ML system—pre-processing, modeling, evaluation, deployment [109, 159]—and can lead
to incorrect decisions. When decision-making algorithms are deployed in consequential settings,
they must include mechanisms for contesting such decisions.
ML systems are particularly brittle and fragile to small errors, so our bar for sufficient contestability
for applications of predictive optimization is accordingly high. For a decision-making algorithm to
be contestable, there must be an explanation accompanying the decision that allows subjects to
understand why they received a particular outcome. In particular, decision subjects should have
access to the data about them and details about the model that was used to make the decision. In
addition, there must be an accessible mechanism for reviewing and correcting contested decisions
[114, 145]. This notion of contestability encompasses the related notions of providing explanations
to the decision subjects and algorithmic recourse [98].
Due to the complexity of ML systems, mechanisms to offer contestability in any meaningful
way would require significant overheads—in providing information about the data and models
used for decision-making, educating decision subjects about the decision-making mechanism, and
reviewing appeals. This contradicts developers’ claims of automation and removing humans from
the loop. Perhaps for this reason, none of the eight applications that we analyzed seem to provide a
satisfactory level of contestability. For example, Rudin et al. [160] find that COMPAS’s models have
severe transparency issues and cannot be well understood even by experts. They also highlight
that incorrect criminal history data has led to incorrect outputs in the past, but decision subjects
cannot change or challenge the information about them that is used in the COMPAS algorithm.
A prominent example of a real-world failure of an automated system due to the lack of contestability
is the Dutchwelfare fraud scandal in which 30,000 parents werewrongly accused of fraud, eventually
leading to the resignation of the Prime Minister and his entire cabinet [86].

3.7 Goodhart’s law: predictive optimization doesn’t account for strategic behavior

Goodhart’s law states that “when a measure becomes a target, it ceases to be a good measure” [74].
Here, we focus on how an agent may game a metric in a way that reduces the validity of the
measurement. This is also known as Goodhart’s adversarial law [116]. A canonical example is the
cobra effect: when the colonial British government offered bounties for dead cobras to reduce the
cobra population, the response instead was people breeding more cobras to kill.
Strategic behavior is pervasive: this is what teachers do when they “teach to the test.” COMPAS’s
inputs include defendants’ agreement to sentences like “Some people must be treated roughly or
beaten up just to send them a clear message” [7, 37]. Defendants can easily adapt their responses to
such questions [121], which the developer acknowledges [131]. When people know that AI is used
for hiring, they often use fancy words [84] or stuff their resume with the keywords from the job
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Pre-trial risk COMPAS [131]       H#
Child maltreatment AFST [50]    H#    
Job performance HireVue [87] H# H#  H# H#   
School dropout EAB Navigate [56, 63] H# H# H# H# H#   
Creditworthiness Upstart [182] H# H# H#  H# H# H#
Suicide Facebook [44]  H# H# H# H#  H#
Medical risk Optum ImpactPro [136] H#   H# H# H# H#
Life insurance risk Velogica [73] H# H# H# H# H# H# H#

Table 2. A matrix with rows representing the eight consequential applications and columns representing the
seven shortcomings of predictive optimization.  represents concrete evidence that an application suffers
from a limitation; H# represents partial or circumstantial evidence. Detailed explanations of each cell are
included in Appendix B. Our key finding is that this matrix is dense.

description [164]. Attempting to improve one’s credit score in a way that doesn’t translate to an
improved ability to repay loans is extremely common. This includes getting retail credit cards [137]
and reducing the number of credit inquiries, e.g., by completing a pre-qualification form first [190].
It is natural for people to adapt their behavior to try and achieve a particular outcome, and is not
just a result of people trying to “game” a system.
Strategic behavior undermines developers’ claims of accuracy. Similar to target-construct mismatch,
the target of prediction is no longer representative of the underlying construct of interest. Further,
the distortion that leads to this drop in accuracy is not arbitrary, but systematic: those who have
the access and knowledge to understand how to manipulate the system are at an advantage. Finally,
some forms of strategic behavior such as obtaining and maintaining unnecessary credit cards
impose a wasted (time) cost on decision subjects.
An example of a past failure due to concerns around Goodhart’s Law is the LYFT score (Life Years
from Transplant) for kidney allocation [153]. This score was proposed for allocating kidneys to
patients in need of a transplant based on a prediction about how long they would live after the
transplant [153]. Using this score would result in a disincentive for patients with kidney issues to
take care of their kidney function: if their kidneys failed at a younger age, they would be more
likely to get a transplant. That was one reason the LYFT proposal was rejected.

3.8 Summary: predictive optimization fails to meet its stated goals

We analyzed each of the 8 applications identified in Section 2.4 with respect to each of the limitations
identified in Section 3. To check if an application suffers from a limitation, we synthesize past
literature and, in some cases, augment this with our own analysis. We present our synthesis and
analysis for all 56 cases (8 applications × 7 critiques) in detail in Appendix B, and summarize our
findings in Table 2.
In the table, a filled circle ( ) denotes that prior work has shown how the specific application suffers
from the specific limitation. A half-filled circle (H#) denotes that either prior work has analyzed the
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specific limitation in a closely related application or that we provide our own analysis of why the
application suffers from the limitation.
Note that some rows have a high prevalence ofH#. This is due to two reasons. First, some developers
are less transparent than others. When there is little to no information about an application, it is
harder to understand its limitations. Second, there is a dearth of published research about some
applications, perhaps as a result of the lack of transparency by the company, or perhaps simply
because they are less well known to researchers. For instance, COMPAS and AFST have been
extensively discussed in academic literature. As a result, we found several concrete analyses these
applications. In other words, H# doesn’t mean that evidence is weak. Rather, it highlights the need
for more transparency from developers and further study of these applications.

4 CHALLENGING THE LEGITIMACY OF PREDICTIVE OPTIMIZATION

4.1 Minimum conditions for legitimacy

There have been long debates about defining legitimacy, especially in political philosophy [150, 187].
The legitimacy of a political system depends on various factors: how well it achieves its goals,
whether the subjects of the political system are involved in developing the rules, and whether
the decision subject has the ability to challenge decisions. Turning to automated decision-making
systems, Lazar [107] argues that many ML systems are being used to exercise power over us and
to govern, that the exercise of this power must meet standards of legitimacy, and that legitimacy
of automated decision making requires a form of transparency ("publicity") that in turn requires
explanations.
We don’t adopt any specific conception of legitimacy. We only claim that, at a minimum, automated
decision-making systems must fulfill their stated goals of accuracy, fairness, and efficiency as a
necessary condition for legitimacy. These goals and values are central to how these systems are
generally understood, and it is on the basis of these claims that the public has acquiesced to their
use. If these conditions are not met, those exercising power are not being truthful to the public and
are exceeding the bounds of the power they have been entrusted with.

4.2 Predictive optimization should be considered presumptively illegitimate

We started by hypothesizing that since the limitations of predictive optimization that we identify
arise directly from the modeling process, they will recur across applications. The density of the
matrix in Table 2 provides strong support for this hypothesis. In Section 3 we explained why none
of these limitations can be evaded by technical fixes. Thus, we should expect new applications of
predictive optimization to suffer from these shortcomings as well, and to fall short of the goals of
accuracy, fairness, and efficiency. Therefore, the presumption should be that they fail to meet the
bar for legitimacy.
Of course, it is possible that some applications are sufficiently different from the ones we have
analyzed that the limitations can be overcome. Crucially, however, presumptive illegitimacy means
that the onus of providing a substantive justification with respect to each of these objections must
reside with the decision maker. Civil society must not have the burden of showing again and again
that these systems fail to meet their goals.
This would be a major shift from the status quo. Yet, what we advocate for is not remotely radical.
After all, power is always presumptively objectionable and requires justification [107]. Instead,
what seems to have happened is that in all the hoopla around big data and AI, the shaky intellectual

Electronic copy available at: https://ssrn.com/abstract=4238015



Against Predictive Optimization 19

foundations of predictive optimization were not sufficiently widely recognized, and developers’
claims, especially accuracy, went unchallenged for too long, even by critics. This let predictive
optimization proliferate so quickly that it appears to have become a part of the new social order, and
hence normalized, to the point where challenging the entire category seems almost unthinkable.
Given this state of affairs, our aim is to point out that the emperor has no clothes.
Notably, excluded from our critiques here are structural objections to the institutional context of a
particular decision making system, such as calls for an overhaul of the criminal justice system [76,
119, 166]. Since structural critiques are beyond the scope of any individual decision maker, they
are often not sufficiently compelling to those in charge of deployment. In contrast, our critiques
are limited to those that can be seen as firmly within the scope of individual decision-makers, and
thus make it hard for them to evade responsibility.
This paper focuses narrowly on how predictive optimization fails to meet its stated goals. In
addition, predictive optimization systems lack other desirable properties that may be necessary for
legitimacy, such as explicit deliberation and balancing of competing values. They shift authority to
technocrats and away from public representatives [58, 142]. Power is often usurped by profit-driven
developers at the expense of a properly authorized institution. For instance, COMPAS is built by
Northpointe, a for-profit company, but is used in courts all over the United States. Government
agencies often fail to recognize that when they procure automated decision making systems, they
are effectively delegating policy making to the developers [127].

4.3 The need for legitimation is application-dependent

While we have argued that our critiques are broadly applicable, they are far from sufficient for
a complete analysis of the legitimacy of any specific application; they are only a starting point.
Application-specific considerations that we haven’t considered can be critical: for instance, suicide
prediction on social media threatens privacy and civil liberties, which impacts legitimacy.
Applications that are subject to our critiques aren’t necessarily illegitimate. Consider a travel agency
that uses ML to predict whether someone may decide to vacation soon and advertises travel deals
to selected individuals. While this example falls under the scope of predictive optimization, it is less
morally reprehensible than some of the applications in our list since the decision’s impact is small.
Many characteristics of applications impact the legitimacy of predictive optimization.
Public or private sector: Governments derive their power—and ability to function—from being
seen as legitimate. Thus, legitimacy is a critical consideration for public sector algorithms. In
contrast, private firms are allowed more latitude, legally and morally, and the bar for legitimacy is
lower. But there are limits. When companies make highly consequential decisions about people, they
start to assume some of the power that governments do. Another way in which the distinction is
blurred is when public entities such as courts use tools that have been created by private companies.
Degree of choice: In an application such as hiring, individuals have a choice because there are
(typically) many companies with open positions which use different criteria for selection. On the
other hand, whether someone will be placed under pre-trial detention is decided by a single entity.
When the individual has less choice, the decision maker has more power over them and must
therefore face more scrutiny [42].
The degree of choice is closely related to whether an application is in the public or private sector, but
there are exceptions. For example, standardized tests such as the SAT and the GRE are administered
by private companies but those companies are monopolies—there is usually no alternative to these
tests for university applications.
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Severity of consequences: The earlier example of travel advertisements seems relatively unob-
jectionable because the stakes are low. The more severe the consequences, the higher the bar for
legitimacy. In general, public-sector applications such as child maltreatment prediction tend to have
more serious consequences than private-sector ones, although there are many counterexamples.
The degree of choice also correlates with severity.
Opportunities vs. burdens: Another factor is whether the application allocates an opportunity
(e.g., admission to graduate school) or a burden (e.g., pre-trial detention). The latter raises a greater
demand for legitimation. The distinction between opportunities and burdens is sometimes blurry
but nonetheless conceptually useful.

4.4 A rubric to assess the legitimacy of predictive optimization

Our analysis has shown that predictive optimization applications uniformly suffer from similar
shortcomings. Our key finding—that the matrix in Table 2 is dense—suggests an intervention. When
applications of predictive optimization are being deployed, they can be challenged based on the
critiques we compile. We provide a rubric for those trying to resist predictive optimization as well
as those trying to deploy it. We detail 27 questions that must be addressed with before predictive
optimization is deployed. In particular, for each of the seven shortcomings, we include 2-5 questions
based on common failure modes from our analysis.
We follow and build on many efforts to critique and resist the deployment of automated decision-
making systems—including those from academia [25, 33, 59, 168, 185], non-profits [72, 124], and
community organizations [35, 138]. Similar concerns have been raised in past work, including
unfair outcomes [61, 76], increased surveillance [35, 93, 138], false assumptions that AI systems
work as intended [40, 97, 129, 130, 149, 151, 167], and questions of illegitimacy [26, 107, 184].
Through the rubric, we aim to aid civil liberties advocates, community organizers, and activists in
challenging predictive optimization when deployed in their communities. When a new application is
deployed, they can use the rubric to challenge developers’ claims of accuracy, efficiency, and fairness
that are often used to justify and legitimize the application. The rubric can also aid researchers
and journalists when investigating predictive optimization by providing a concrete set of failure
modes to look for in a tool. Finally, and most notably, we want to shift the burden of justifying
why the tools are not harmful onto developers and decision-makers. The rubric serves as a set of
basic standards that developers of predictive optimization must address in order to advertise their
application as legitimate.
We present the rubric on our project website: https://predictive-optimization.cs.princeton.
edu/.

4.5 Alternatives to predictive optimization

Suppose we have a consensus that a particular decision-making system that uses predictive opti-
mization is illegitimate. What do we replace it with? Here, we present 4 alternatives. None are easy
to implement, but we hope that together they offer a compelling vision of viable alternatives.
Note that the availability of alternatives impacts legitimacy [23]. That is, if there are no available
alternatives (including shutting down the decision making system) that address the shortcomings of
a predictive optimization system without causing other serious harms, the system may potentially
be considered legitimate.
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Changes to address individual critiques: To begin with, developers can address our critiques
when creating decision-making algorithms. For example, causal inference techniques from program
evaluation can help evaluate decisions as interventions. To ensure contestability, complex ML
models could be replaced with simple, interpretable ones [96, 183], and used with institutional
oversight [30, 77]. Note that each of these possible changes slightly shifts the system away from
our definition of predictive optimization.
Institutional changes to address issues at their root: The need and appeal for algorithmic
intervention often arises in institutions that are already suffering from crises of legitimacy, trust,
and resources. For instance, predictive optimization has been adopted in hiring algorithms because
existing hiring systems are broken—companies have no good way to filter through all applications
for a job, and there can be hundreds of applicants for each opening. Decision-making algorithms
are a band-aid to this broken system since they allow companies to reject candidates with an air
of impartiality. Removing predictive optimization from this context without institutional changes
does nothing to improve the root cause of failures.
Effective changes can involve redesigning institutions so that the resource in question is no longer
scarce and everyone eligible can benefit. It can also include changing the institution to be less
situated to adopt automated decision-making in the first place; for example, changes in the criminal
justice system to rehabilitation rather than incapacitation [14].
Of course, such large-scale changes require a lot of momentum and political will, will need to be
designed in a participatory fashion [169], and may take a long period of time.
Replacing decision-making systems with partial lotteries: If reducing resource scarcity is
not an option, partial lotteries are worth considering [62, 78, 90, 177]. Such a lottery (for college
admissions, research grants, and many other scarce resources) would select randomly among
applicants who pass a minimum qualifying standard. This approach faces up to the fact that in
many scenarios it is not feasible to accurately predict success or quality in advance. In contrast,
predictive optimization is often used as a crutch to avoid confronting the inherent arbitrariness of
the system. However, partial lotteries may not be suitable for applications where stricter definitions
of equal treatment are important, such as setting bail.
Incorporating categorical prioritization: As discussed in Section 2.2, predictive optimization
often replaces categorical prioritization. So one antidote to the ills of predictive optimization is to
simply return to categorical prioritization or to design a hybrid approach.
Of course, categorical prioritization also suffers from several shortcomings, such as potentially
prioritizing the opinions of groups who are more politically organized, as discussed by Johnson and
Zhang [94]. One way to hybridize these two approaches would be to use quantitative and perhaps
predictive methods to define risk categories.
Case study: COVID-19 vaccine eligibility. One application that illustrates the benefit of categor-
ical prioritization is the rollout of COVID-19 vaccines in the U.S. in the early days when supply was
scarce. A predictive optimization approach that targeted saving lives would rank individuals by the
risk of death from COVID-19. But the approach that was used was categorical prioritization. To
some degree, predictive considerations were used in constructing categories, notably by prioritizing
groups in decreasing order of age, since age strongly predicted risk.
Categorical prioritization offered many benefits, which were collectively essential for legitimacy.
First, categorical prioritization allows us to incorporate deontic considerations. Consider that
healthcare workers were among the first to receive vaccines. This was not only because they were
at the most risk, but as just deserts for their bravery and dedication in putting themselves in harm’s
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way for many months. Additional prioritized groups included essential workers who were keeping
the economy running, and immunocompromised individuals because they were at a higher risk if
they were infected. The three cases above reflect different reasons for why the individuals were
prioritized. On the contrary, predictive optimization would not allow for any deliberation other
than the choice of the target variable to determine eligibility.
Second, the easily understandable nature of these prioritizations allowed the public to debate the
moral values underlying certain decisions. Again, public debate about the choices made using
predictive optimization is hard, if not impossible, since the decision rules are opaque. Even an
interpretable model such as logistic regression may be hard to understand and disseminate to the
public. On the other hand, categorical prioritization relies on simple simulatable rules, which the
public can easily keep in mind. This is necessary for productive public debate.
Simulatability is important not just for public deliberation but also for individuals. If a predictive
optimization algorithm determined vaccine eligibility, each individual would get a notification
when they are eligible for vaccination—they could not plan or have any idea about the criteria for
eligibility.
Finally, categorical prioritization proved flexible to react dynamically to the changing reality of
vaccine uptake and supply. While an early supply of vaccines was available and made eligible to
certain groups, the eligibility requirements for later stages were still being debated and defined. This
flexibility and adaptability was important due to the limits to prediction—during the initial stages
of vaccine rollouts, neither supply nor demand could be accurately forecast. Another dimension
of flexibility was that the federal government allocated vaccines to states based on population
(rejecting an earlier recommendation to allocate based on risk) and allowed the states to make their
own decisions regarding prioritization.

5 CONCLUSION

Previous critiques of automated decision-making have broadly fallen into two categories. The first
challenges automated decision-making in a specific domain, such as criminal risk prediction [53, 80],
child welfare [1], or interventions for suicide [117]. These critiques narrowly focus on harms caused
by specific decision-making algorithms or those in a specific domain. While important, this work
leaves us reacting post-hoc and playing Whac-a-mole to predictive optimization as it proliferates
into new domains.
The second type of critique looks broadly at automated decision-making [42, 184]. Existing work
in this category is less interested in any particular application of automated decision-making; the
focus is on how automated decision-making systems shift power and whether they are legitimate.
While also useful, this set of critiques aims so broadly that it is insufficient, on its own, to challenge
the legitimacy of any specific application.
Our work offers a unifying conceptual framework to thread these two strands of the literature.
Our key observation is that predictive optimization is a coherent and useful category for pointed
critique. Predictive optimization is already widespread, and although the applications belong to
dozens of disparate domains, they share a recurring set of shortcomings.
Our rubric translates our conceptual framework into a set of questions to contest future deployments
of predictive optimization proactively. It can also be useful for developers in substantively addressing
our critiques instead of making unfounded claims of accuracy, fairness, and efficiency [115].
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APPENDIX

A PREDICTION POLICY PROBLEMS ARE RARE

We revisit the application of predictive optimization to knee and hip replacement surgery allocations
in Kleinberg et al. [100]. Their claim is that predictive optimization can be used to better allocate knee
and hip replacement surgeries. Here we analyze how the seven shortcomings we identified might
apply to their example, and show that their illustrative example might not be as straightforward as
it might seem.
To begin with, we clarify our interpretation of the type of algorithm deployment proposed by
the authors. If the argument is for all surgery allocation to be replaced by an algorithm, then
our critiques apply in their full force to undermine the legitimacy of such an application. But
if the argument is more along the lines of identifying the riskiest 1% of surgery recipients and
reallocate those surgeries, then our objection is less strong. Because the precise proposal is unclear,
we proceed with the former, where the algorithm has been trained to predict mortality on a patient
in the 1-12 months following a hip or knee replacement surgery, in order to determine whether
such a surgery should be performed.
Prediction vs intervention: Kleinberg et al. [100] predict which patients are at risk of death 1-12
months after a surgery. But they don’t model who will benefit most from the surgery; instead, they
assume that all patients at a given risk of mortality would benefit equally. For instance, someone
who doesn’t die within 12 months of surgery could still have severe complications due to the
surgery. Similarly, Kleinberg et al. assume that patients would break even after a given amount
of time—and pick the same threshold across patients. But different patients could recover from
surgery in different time periods.
Target-construct mismatch: Kleinberg et al.’s target variable is mortality between 1-12 months.
Their construct is money saved and disutility to patients. However, different patients could value
surgery differently. In addition, patients might have different risk preferences. Some might be
willing to take a chance despite predictions of mortality from a black-box algorithm, while others
could decide that they would like to heed to model’s prediction. Kleinberg et al.’s model makes
these decision for the patients; in their model, they have no way of soliciting patients’ feedback
about the utility of surgery or their risk preferences when they are making predictions.
Distribution shift: Mullainathan and Obermeyer [126] highlight that when medical datasets
are used for making predictions, they are likely to be biased. For predicting stroke in emergency
department visits, they find that heavy utilization, rather than biomedical markers of stroke, turn
out to be 4 of the 6 most important variables in predicting stroke. In other words, the model predicts
that patients who are more likely to visit the hospital are more likely to show up with symptoms of a
stroke. Patients with a longer history of visiting the hospital would be more likely to be given better
care. Similar biases are likely present in electronic health records used for predicting mortality in
Kleinberg et al..
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In addition, Kleinberg et al.’s data only comes from Medicare beneficiaries, and specifically, the
1.3% of them who had a claim for hip or knee replacement surgery in 2010. This leaves out those
who chose not to have a surgery or were unable to for reasons such as financial cost. Additionally,
as medicine advances and different hospitals perform these surgeries [172], mortality rates and
patterns are likely to change.
Limits to prediction: Kleinberg et al. state that:

Replacing the riskiest 10 percent with lower-risk eligibles would avert 10,512 futile
surgeries and reallocate the 158 million per year (if applied to the entire Medicare
population) to people who benefit from the surgery, at the cost of postponing joint
replacement for 38,533 of the riskiest beneficiaries who would not have died.

This means that for every “futile” surgery averted, about 4 people would not get a surgery who
otherwise would have — based purely on an incorrect prediction about their mortality.
Without inputs from the community of people this algorithm would affect, there is no way to decide
what is an acceptable threshold of false positives. But we can look to past deployments of predictive
algorithms to get a sense of patients’ opinions on predictive accuracy. When the LYFT score (life
years from transplant) was proposed for kidney allocations to people who were likely to gain the
most number of years as a result of kidney transplants, one of the reasons why the proposal was
rejected was the low accuracy numbers [153]. LYFT had an AUC of 0.68, which means that the
model would predict a shorter survival time for a patient who lives longer in 32% of the cases.
Kleinberg et al. don’t report AUC, but it is clear that the patients and healthcare providers who will
eventually be affected would have strong opinions about the threshold of accuracy that is necessary
for denying someone surgery. It is far from clear that getting 80% of the decisions wrong, even if
the model is only used to identify the riskiest 10% of the total surgeries, is an acceptable threshold
of performance.
Disparate impact: Patients of color often receive inferior healthcare [104]. As a result, focusing
on mortality risk could further benefit and allocate surgeries to those who have received better
post-surgery support in the past. If the base rates between demographic groups are different, there
are fundamental tradeoffs between different notions of fairness, which is not addressed by their
analysis.
Contestability: The input feature has 3305 dimensions, which is nearly impossible for an individual
to understand, even if the model used is logistic regression. Other factors, such as appeals and
overheads due to providing patients explanations of why they weren’t selected, are not factored in
to their cost-benefit analysis.
Goodhart’s Law: The input features include “symptoms, injuries, acute conditions, and their
evolution over time.” Patients are often eager to get joint replacement surgery [18] and could
misreport their responses to improve their likelihood of receiving the surgery [19, 120].

B DETAILED ANALYSIS OF THE EIGHT CONSEQUENTIAL APPLICATIONS

In this section, we discuss our arguments for filling out Table 2. Each paragraph in this section
corresponds to one cell in Table 2. For each application, we go over the seven critiques to see if
they apply. We also briefly look at the claims made by each of the eight developers.
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B.1 Pre-trial risk prediction in COMPAS.

Northpointe sells COMPAS as a set of risk prediction tools to be used in criminal justice settings.
Here, we focus on COMPAS’s pre-trial risk prediction tool. In our analysis, we rely on the company’s
documentation [131], as well as past literature [7, 12, 13, 38, 51, 53, 67, 79, 102, 121].
The documentation provided by COMPAS makes claims about accuracy, validity, and fairness
Northpointe [131]. For instance, Northpointe claims that “...COMPAS risk scales generally fall into
the moderate to good range of discrimination ability,” “In overloaded and crowded criminal justice
systems, brevity, efficiency, ease of administration and clear organization of key risk/need data are
critical. COMPAS was designed to optimize these practical factors,” and that a study from one of
the tool’s creators found that “COMPAS risk scales performed equally well for African American
and Anglo men at discriminating recidivists in a probation sample.”
The U.S. detains over 400,000 people before trial [91]. COMPAS, like many other pre-trial risk
assessment tools, offers an enticing possibility: reducing the number of people detained before
their trials. However, like other applications on our list, automated decision-making is a band-aid
for underlying issues with the criminal justice system. For instance, over 100 civil rights groups
have urged deeper changes to criminal justice institutions, such as ending pre-trial detention
altogether [34]. Structural changes are outside the scope of developers of automated decision-
making systems. But they would be more effective in addressing problems with the criminal justice
system at their root.

(1) Intervention vs. prediction: Formulating pre-trial risk as a prediction problem does not do
anything to increase our understanding of the underlying phenomenon, nor does it help us
discover better interventions. For example, Fishbane et al. [67] find that simply providing a
nudge to defendents reminding them of their court appointments is enough to reduce failures
to appear. This is in addition to other potential reasons for failures to appear in court, such as
financial insecurity. For example, financial insecurity could lead to defendants being unable to
take leave from work in order to show up to their court appointment. Moreover, some outcomes,
such as incapacitation, are more amenable to a predictive formulation, compared to others,
such as rehabilitation [13]. Finally, a higher bail amount based on a high risk score can in turn
increase the likelihood of recidivism [79].

(2) Target-construct mismatch: The construct is the risk of crime or failure to appear posed
by the defendant if released. The target variable is re-arrest or failure to appear in court [12].
While the construct focuses on whether a defendant will commit a crime, the concept of “crime”
is not an observable construct—for instance, not all crimes result in arrests. Therefore, the
accuracy of predicting re-arrest does not translate to accuracy in measuring re-offense; in fact,
there is no way to measure re-offense; the developers can only measure re-arrests. Notably,
arrests are likely to be systematically biased against Black people due to known biases that
result in over-policing [102].

(3) Distribution shift: Corbett-Davies and Goel [38] highlight sample bias in the training sets
of criminal justice datasets when they are collected in one geographic area and are expected
to generalize more broadly. Further, COMPAS might suffer from temporal drift in addition
to geographic sample bias. While the developers of COMPAS are not transparent about the
data used to train the algorithm, their documentation mentions that at least some of the data
used to calibrate their models is from the years 2004-5 [131]. Finally, Bao et al. [12] highlight
that the data used for pre-trial risk prediction algorithms are collected under an existing
intervention—the existing criminal justice system.
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(4) Limits to prediction: Dressel and Farid [53] demonstrate that COMPAS is no more accurate
or fair than predictions made by human participants with little or no criminal justice expertise.
Further, they find that a simple linear model that only uses two features is nearly equivalent to
COMPAS, which had access to 137 features.

(5) Disparate performance: Angwin et al. [7] highlight the disparity in false positive rates in
COMPAS, which are unavoidable due to the prioritization of the alternative fairness metrics of
predictive parity, accuracy equity, and calibration [51, 53]. This disparity means that the costs
of misclassification are disproportionately borne by Black defendants and communities. Given
that it may not be immediately obviously which fairness criteria to be prioritized, a more in
depth study into the impacts and beliefs of different groups would be needed as justification
for the fairness criteria used.

(6) Contestability: Rudin et al. [160] find that COMPAS’s models have severe transparency issues
and cannot be well understood even by experts. The public does not have access to the data and
model that is used to make decisions about them. Rudin et al. [160] also highlight that incorrect
criminal history data has led to incorrect decisions in the past, but decision subjects cannot
change or challenge the information about them that is used in the COMPAS algorithm.

(7) Goodhart’s law: Features used in the COMPAS algorithm include survey responses asked to
defendants [37]. These questions include asking for agreement to sentences like “A hungry
person has a right to steal,” “I have felt very angry at someone or at something,” and “Some people
must be treated roughly or beaten up just to send them a clear message.” Social desirability
bias is likely to creep in, as defendants may reasonably try to present as less likely to commit
a crime [121]. Indeed, the developer of COMPAS acknowledges that some people might fake
their answers in the responses to their questionnaire [131].

B.2 Child maltreatment prediction in AFST.

The Allegheny Family Screening Tool predicts which children are at risk of maltreatment to decide
which households should be investigated for child maltreatment. In a 2017 report [5], the creators
of AFST claimed that the tool was at least as accurate as a mammogram:

Measuring the accuracy of predictive tools is not simple; however, at rollout, the accuracy
of the AFST was described as comparable to a mammogram: 77 percent accuracy for
predicting whether a child would be placed in care within two years after being referred
and screened-in for investigation, and 73 percent accuracy for predicting whether a
child would be re-referred within two years after being referred and screened-out for
investigation. At six-month rebuild, we intend to add an additional flag for mandatory
screen-in, which is generated by a Random Forest Model which has accuracy of 88
percent (which is substantially higher than a mammogram).

A later study by the developers of AFST [32] found that the original estimates were overoptimistic
due to data leakage [32].
On fairness, the developers claimed that “fairness of algorithms is an ongoing issue for researchers
in this field and the AFST research team will continue to monitor how that research impacts the
AFST.”
Note that while we focus on a critique of the decision-making algorithm, we acknowledge that
structural changes, such as redesigning institutions to help instead of punishing families [2, 152],
are overwhelmingly more important. A better algorithm is not enough to resolve fundamental
issues with child welfare systems.
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(1) Intervention vs. prediction: Eubanks [61] highlights that the predictive model used in AFST
can end up “[producing] the outcome it is trying to measure,” since being flagged by the
algorithm leads to higher scrutiny and ultimately higher chances of a child being removed from
their family. Additionally, AFST cannot account for the different reasons why a child could be
flagged as being at risk. For instance, a child could receive a high score due to poverty or abuse.
The former can be alleviated through material help to families; but the model has no way of
distinguishing between the two cases.

(2) Target-construct mismatch: The construct is child maltreatment and the target variables
are community re-referral (when two calls are made on behalf of a child within two years)
and child placement (child placed in foster care within two years). Note that in this case, the
data only reflects placement in foster case rather than maltreatment since there is no way to
collect data on the children who are actually mistreated. There is also a mismatch between the
outcomes desired by society (better treatment of children) and the outcomes desired by the
algorithm’s developers (higher model accuracy).

(3) Distribution shift: AFST does not have data about people who do not use public services—the
data is only from those who do use these services. Parents who rely more on public services
(even those unrelated to childcare) are more likely to be flagged for maltreatment. Since AFST
is not trained on data from those who can access benefits privately (e.g., private mental health),
it overly penalizes the poor who have to rely on public benefits [61]. As a result, the model
could potentially predict poverty instead of child maltreatment. There are also disparities in
the rates at which children are reported to child welfare agencies. For instance, Black children
are more likely to be reported compared to other races [139].

(4) Limits to prediction: Salganik et al. [162] find that despite using thousands of data points
about a child collected in a detailed longitudinal study, ML models could not predict outcomes
about their well-being accurately. They performed about the same as simple linear models with
few variables.

(5) Disparate performance: Cheng et al. [30] find that AFST’s recommendations were more
racially disparate compared to pre-AFST recommendations. The screen-in rate disparity between
Black andWhite children based on AFST scores was 20%.While AFST creators claimed that their
tool was reducing disparate impact, Cheng et al. [30] did not find evidence of this claim. Further,
the creators of the tool do not explain the explicit steps taken towards reducing disparate
impact.

(6) Contestability: Eubanks [61] outlines that human decisions and AFST decisions often disagree.
Far from providing explanations to the end user, the algorithm does not even provide explana-
tions to the humans who use the tool. As an instance of the lack of contestability leading to
uncaught errors, De-Arteaga et al. [48] found that due to a glitch in the ML model, some risk
scores in the AFST algorithm were misestimated. However, there was no way for the families
being investigated to consult or correct these errors, since they were not aware of these issues
occuring in the first place.

(7) Goodhart’s law: Eubanks [61] finds that families being targeted as high-risk may recede
from various community networks, which contributes to social isolation and parenting stress
due to parents feeling like they are being watched and stigmatized. Instead of looking for
greater support from community networks, the presence of the algorithm could discourage
parents from seeking support with raising children. Additionally, nuisance calls by disgruntled
neighbors, family members, or other potentially adversarial associates can negatively impact
ASFT scores [61].
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B.3 Job performance prediction in HireVue.

HireVue sells tools to aid hiring. This includes game-based assessments and video personality
assessments, which ask candidates to answer questions which are then evaluated used an AI-based
tool. HireVue earlier used to sell face analysis tools that assess candidates based on their facial
expression. In 2021, after public outcry, they stopped selling this tool 6. Our analysis here shows
that fundamental issues with their tool still remain, despite claims such as “Fast. Fair. Flexible.
Finally, hiring technology that works how you want it to” on their website. In another blog post,
they claim that “We go on to ensure [that our] assessments actually predict job success.”

(1) Intervention vs. prediction: The aggregate of individually optimal predictions may not lead
to a globally optimal intervention. For instance, in a sales job, a company could prioritize hiring
people based on potential future sales. However, hiring people who are likely to have more
individual sales might not lead to better sales for the company, because it doesn’t account for
other behavioral factors such as being polite to customers, helping out coworkers, and working
well together [20], which can have a long-term detrimental impact on the overall sales of the
company even if the individual employee performs well. This is colloquially known as the “No
Asshole Rule” [174].

(2) Target-construct mismatch: The construct is job performance and the target variable is
an industry-dependent performance metric. For example, it could be the number of sales
for a sales-representative, one year retention for flight attendants, and average client rating
for tutors [108]. Job performance is famously difficult to measure [27, 154, 158], with single
performance metrics receiving criticism due to the neglect of aspects like employee behavior,
e.g., politeness to customers [128] or helping their coworkers [20]. Ratings are frequently
subjective [83], and specifically in the case of tutor quality ratings, student ratings of their
instructors are notoriously biased [60]. All of these make efforts to predict job performance
based on past data suspect.

(3) Distribution shift: Hirevue trains their models based on a custom assessment. The custom
assessment requires 400 people in the target job in order to train a model [123]. Thus, the
model will only be trained on people already hired by the company, a non-random set of the
population [85]. This can lead to a reproduction of existing population trends in the existing
hired pool of employees, e.g., prioritizing men over women [46].

(4) Limits to prediction: Leutner et al. [108] show that AUC on some performance outcomes
is .68, and specifically writes that “Notes: AUC values above .60 suggest the model is able to
distinguish between two classes fairly well,” which is a subjective claim without backing, given
that the model would score .50 if it took decisions based on tossing a coin.

(5) Disparate performance: Leutner et al. [108] note that the notion of fairness adopted here is
the legal one of an adverse impact ratio above 4/5. In other words, the selection rate for any
protected class should not be less than 4/5ths of the rate for the group with the highest selection
rate. For gender, this is defined as the female selection rate divided by that of the male selection
rate. However, this legal criterion does not capture whether this model will help to intervene
in cycles of workplace hiring inequity. Besides, a 20% disparity is morally problematic even if it
is legally acceptable; such disparities can compound over time.

(6) Contestability: Candidates who are evaluated using HireVue have no insights into the criteria
used for evaluation [84]. This means that they have no way to challenge incorrect or flawed
decisions.

6https://fortune.com/2021/01/19/hirevue-drops-facial-monitoring-amid-a-i-algorithm-audit/
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In addition, HireVue did not share details about how well the model performed. Before 2020,
there were no public audits of their hiring assessment tools [153]. They released an audit of
their tool in 2020. However, before downloading the audit, you need to accept a restrictive
agreement on using or sharing the report’s findings:

By downloading this document you acknowledge and agree this report is the sole and
exclusive intellectual property of HireVue, Inc., and you agree you shall not use, copy,
excerpt, reproduce, distribute, display, publish, etc. the contents of this report in whole, or
in part, for any purpose not expressly authorized in writing by HireVue, Inc.

Since the findings in the report cannot be shared, let alone interrogated, we do not consider it a
public audit.

(7) Goodhart’s law: When people know that AI is used for hiring, they often do not understand
how it works and use fancy words to optimize for their success [84] or stuff their resume with
the keywords in the job description [164]. Whether or not this works, it affects the behavior
of job candidates. Another report found that wearing glasses and adding a bookshelfl in your
video intervieiw makes your automated interview scores higher [82].

B.4 School dropout prediction in EAB Navigate.

EAB Navigate is a tool for colleges to target interventions at students who are claimed to be at risk
of dropping out [63]. The company uses personal information, academic performance, app activity,
and credit trends from students to predict if they will drop out of school. It is meant to be used by
college administrators to evaluate whom to target with interventions.
On accuracy, in a document from the company detailing the tool (found and uploaded by The
Markup [63]), the company boasts:

The performance of your institution’s Student Success Predictive Model has been ex-
tensively optimized and evaluated; the model will provide your school and its advisors
with invaluable and otherwise unobtainable insight into your students’ likelihood of
academic success. The model incorporates the latest breakthroughs in statistics and data
science and places your institution at the cutting edge of student-insight technology.
Your advisors may use it with confidence to both assess individual students and design
effective and efficient targeted campaigns.

On efficiency, they state on their website: “Navigate’s workflow solutions help academic advisors,
faculty, and other staff scale interventions.”
On fairness, when confronted with the racial disparities in their system, an EAB employee said:
“What we are trying to do with our analytics is highlight these disparities and prod schools to take
action to break the pattern.”

(1) Intervention vs. prediction: Predictions are often for specific students who seem likely to drop
out, but it isn’t clear that the types of interventions the school has in mind, e.g., offering advising
to particular students, is what is needed by each student. For example, sometimes school-wide
structural interventions are more helpful [54, 55, 147], and other times, individuals from specific
populations, e.g., LGBTQ students, would benefit from a more catered type of intervention than
general advising [52]. Predictions don’t help us understand which interventions would help
individual students.

(2) Target-construct mismatch: The construct is attrition and the target variable is an observable
metric of dropping out of school. EAB Navigate uses different target variables for each school—
for example, enrollment until next fall, graduation within 4 years, and graduation at any point of
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time [63] are all used to model attrition. While it can be seen as a desirable feature that the
model can be customized for the needs of each school, this also tells us there are numerous
reasonable options for how to operationalize school dropout. Each value-laden choice of target
variable has its own implications for target-construct mismatch [110], and there is no clear
justification to explain that the choice of a particular target variable is more than arbitrary. For
example, if the target variables is enrollment next fall, then this does not count the student who
dropped out for a family emergency, who took a semester off to work, or a reason unrelated
to school success itself. Even in the academic literature, the definition of dropout or attrition
varies greatly [21, 141], making comparisons between studies hard [140].

(3) Distribution shift: The training data for these models come from students who are already
enrolled in the institution, as the filtering criterion frequently includes qualifications such
as "had at least one registered term" and "were seeking a degree" [63]. As the distribution of
students attending colleges change over time, the model might not be reliable on new students
or those who do not fit the criteria of a typical college student. However, that EAB Navigate
trains individual models for each institution does alleviate part of this concern to some extent.

(4) Limits to prediction: The developers take no inputs from the different stakeholders about
acceptable thresholds of accuracy at which students should be referred for an intervention.
There is no deliberation or consensus process for feedback from students. In fact, students on
whom the system was used were unaware that their performance was tracked using predictive
models [63].

(5) Disparate performance: The model targets Black students much more compared to their
white counterparts. Feathers [63] find that “[a]t the University of Massachusetts Amherst, for
example, Black women are 2.8 times as likely to be labeled high risk as White women, and Black
men are 3.9 times as likely to be labeled high risk as White men.” The definition of fairness
used is not specified by the company, nor do they justify why their model is fair.

(6) Contestability: Students being evaluated using EAB Navigate have little to no information
about the models being used [63]—in many the cases, the students do not even know that the
model is being used to make predictions about them. This forecloses any chance of contestability.
Further, the data and model used for making predictions is not available to the students, so any
inaccuracies are left undetected and unchallenged.

(7) Goodhart’s law: To lower dropout rates, one school (Mt. Saint Mary’s) has previously used
dropout predictions to preemptively kick out students so their graduation rates stay high [175].
Other schools have pushed students, especially Black students, out of majors like science and
math into ones with lower dropout rates [63].

B.5 Creditworthiness prediction in Upstart.

Upstart is a lending platform which predicts potential lenders’ creditworthiness. They use over
1,600 datapoints about customers, and claim that “future versions of the model will continue to be
fair,” “Upstart’s model is significantly more accurate than traditional lending models,” and that 73%
of their loans are fully automated.
The Consumer Financial Protection Bureau (CFPB) issued a no-action letter for Upstart after
checking that their model did not suffer from disparate performance across demographic groups.
This letter provided Upstart special immunity:
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The CFPB had granted special regulatory treatment to Upstart by immunizing the lender
from being charged with fair lending law violations with respect to its underwriting
algorithm, while the “no-action letter” remained in force.7

In July 2022, Upstart issued an update to their model and did not wait for regulatory approval from
CFPB. As a result, the bureau rescinded their earlier no-action letter for Upstart.

(1) Intervention vs. prediction: Research research has shown that offering different types of
repayment options can change the default rate [4]. However, algorithms for predicting whether
someone will repay their loans cannot take this into account owing to their predictive formula-
tion.

(2) Target-construct mismatch: The construct is creditworthiness. While Upstart does not
specify the target variable, various sources indicate it could be future repayment of loans or
future salary [105, 155, 182]. For future repayment, a cutoff date will necessarily have to be set
to collect the data, which will not differentiate between someone who pays their loan back right
after this cutoff date, and someone who never pays it back. For future salary, this may have
little bearing on whether a loan will actually be repaid, because an individual could choose to
spend their income in other ways.

(3) Distribution shift: Upstart’s model, like other credit models, only has access to loan default
data about those that were given a loan in the first place [11]. As a result, their data sample
only has information about a portion of the population.

(4) Limits to prediction: Upstart [180] acknowledges that “There is no assurance that our AI
models can continue to accurately predict loan performance under adverse economic conditions.”
In general, these models have been show to perform poorly on predicting out-of-time samples
when the economic conditions have changed drastically [99].

(5) Disparate performance: One of Upstart’s main claims is it uses alternative data sources
like which college an applicant goes to as an indicator of how likely they are to pay back a
loan. There are findings that the algorithm is biased against Historically Black Colleges and
Universities [171]. Upstart responded by claiming that the report contains mistakes [181],
and points to the CFPB report which found that Upstart had increased acceptance rates and
decreased APRs across all protected groups compared to existing models [65]. However, there
is no transparency on the accuracy across these different groups, including whether it is higher
for one group than another.
Note that even under the original no-action letter, CFPB only compared Upstart’s model with
traditional alternatives such as FICO scores. This is a weak bar for fairness: legal compliance
cannot break long running cycles of financial inequality [45, 49].
Finally, as we have discussed (Section 3.5), when the base rates differ across groups, there is
a fundamental tension between different notions of fairness. Upstart does not detail how it
considers fairness in its decision-making algorithm, what fairness tradeoffs it adopts, or how
these decisions were made in the first place.

(6) Contestability: Banks and credit unions which use Upstart provide adverse action notices to
loan applicants. In addition, applicants who are denied a loan due to incorrect documentation
can upload proof of qualification to correct the documentation. However, Upstart does not
specify the model used to make decisions, so the precise criteria used for making decisions are
still unknown to applicants. This means that applicants cannot challenge the decision-making
algorithm on grounds of being incorrect or unfair. Moreover, their model uses over 1,600

7https://www.consumerfinance.gov/about-us/newsroom/cfpb-issues-order-to-terminate-upstart-no-
action-letter/
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features, which makes it hard to challenge incorrect data or to understand how the model is
used for making decisions.

(7) Goodhart’s law: Upstart uses credit scores as an input feature. There are several actions you
can take that will increase your credit score, but are not necessarily related to your ability to
repay a loan. This includes getting retail credit cards [137] and reducing the number of credit
inquiries, e.g., by completing a pre-qualification form first [190].

B.6 Suicide prediction on Facebook.

Facebook uses suicide prediction algorithms to direct help to users who are at risk. One of the
company’s blog posts details how they do this [44]. We use information from this post as well
as several academic works on suicide prediction [29, 117] in our analysis. While Facebook claims
that their random forests model outperforms previous attempts at suicide prediction, they do not
provide any concrete accuracy numbers or other details about their model.

(1) Intervention vs. prediction: Facebook’s algorithm only focuses on predicting suicides, and
does not try to understandwhat interventionsmight be useful. In particular, Facebook’s wellness
checks prompt visits from police—this can be harmful to the decision subjects. People with
untreated mental illness are sixteen times more likely to be killed in encounters with the police
[179]. Committing suicide is also illegal in a lot of countries [117].

(2) Target-construct mismatch: The construct is risk of suicide and the target variable is user
reports of their peers and subsequent actions taken by content moderators [117]. Facebook
can only measure specific outcomes such as reports of suicidal content from an individual’s
friends, and has no way to measure the underlying construct. As we will see in our analysis of
Goodhart’s law below, user reports are often weaponized for mass reporting on Facebook.

(3) Distribution shift: The model is trained based on comments and reports from Facebook
friends of users [117]. This data can be biased towards users who have a higher number of
friends, geographic areas where reporting suicidal content is not taboo, and languages in which
Facebook’s content moderation is more active, such as English [43].

(4) Limits to prediction: There are no performance metrics reported about the suicide prediction
model used by Facebook. Peer-reviewed research on suicide prediction is based on murky
evidence and suffers from lack of construct validity [29]. As a result, we have no evidence of
how well Facebook’s tools work.

(5) Disparate performance: Without any data released about who is referred for welfare checks
by Facebook, it is hard to investigate disparate impact of the decisions. However, the models
used by Facebook rely on natural language processing techniques [117] which have been shown
to be biased in multiple studies [24, 173].

(6) Contestability: Facebook users have noway to interrogate what data ormodel leads to wellness
checks for suicide prevention [117]. They have no way to opt-out of such checks. Further, since
Facebook is a private company, there is no accountability for their model validation and data
collection: unlike research conducted at universities, which requires approval from the IRB,
Facebook only has an optional internal ethics review, and the final decision about produce
launches is based on the company’s discretion.

(7) Goodhart’s law: Content moderation policies such as Facebook’s suicide prediction can lead
to a change in user behaviour in multiple ways. First, users can be targetted as victims of mass
reporting. For example, Buzzfeed reporter Katie Notopolous has her account banned due to
mass-reporting [133]. Similar tactics could be applied to other benign accounts by reporting
their content for suicidal content. Second, people have been shown to change their behavior
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online when they know that they are being surveilled [143]. This could also affect how people
discuss self-harm and suicidal thoughts on platforms like Facebook.

B.7 Medical risk prediction in Optum ImpactPro.

Optum’s algorithm uses past history of a patient to predict whether they are at high medical risk.
The rationale is that providing pre-emptive care to high risk patients can reduce costs in the long
run, for instance, by reducing visits to the emergency room. Optum’s ImpactPro software came
under scrutiny after a prominent Science paper by Obermeyer et al. [134] found evidence of racial
bias. Optum has a document called a “sell sheet”8 where they list attributes such as “cost, risk and
quality” as their main selling points. It goes on to claim that:

With Impact Pro, you can determine which individuals are in need of specialized
intervention programs and which intervention programs are likely to have an impact
on the quality of individuals’ health. ... This rich insight helps you manage populations
proactively, prioritizing timely interventions to enhance the clinical and financial
returns on your population health management programs.

Note that while our focus is on automated decision-making in healthcare, we acknowledge the
need for structural changes. For instance, the need for Optum’s algorithm only arises because of
resource limitations. It is worth questioning whether these limitations are necessary in the first
place. Adopting structural changes would address the root causes of algorithmic failures instead of
merely addressing their symptoms with algorithmic band-aids [69].

(1) Intervention vs. prediction: Healthcare is a long-term goal. Preventative healthcare may be
more effective than reacting to individuals who are already at a high risk [161]. Intervening
when a patient is already high-risk may not be as effective as other interventions earlier on. In
addition, a predictive formulation does not address the problem of higher mistrust that Black
patients have for the healthcare system [6, 8]. In other words, predictions about current risk
status do not inform which interventions are most effective for patients.

(2) Target-construct mismatch: The construct is healthcare needs and the target variable is
healthcare costs [134]. However, due to reasons such as unequal access to healthcare, the costs
are often a poor proxy for the actual healthcare needs. Instead, the higher rate of White patients
who are labeled as high risk illustrates existing inequities in the healthcare system. Obermeyer
et al. say that one of the reasons why Optum could be using healthcare costs as a proxy is
because the construct of health needs is hard to operationalize.

(3) Distribution shift: s discussed in Appendix A, Mullainathan and Obermeyer [126] find that
electronic health records are biased towards people who show up to the hospital more often. It
is possible that patients who are more likely to show up to hospitals will be marked as being at
higher risk. Meanwhile, patients who hesitate to visit the hospital, or those who cannot afford
frequent visits, will be underrepresented in the dataset.
In addition, the model only has access to data from Black patients under existing inequities in
healthcare. Due to higher distrust of physicians by Black people, they have less hospital visits
for illnesses of similar severities [6, 8], and they often spend lesser compared to White people
with similar levels of health issues [134].
Optum also doesn’t disclose how it deals with shifts in geographic distributions. A model trained
on a nationally representative sample is unlikely to perform well at a local level; similarly, there
are differences in how people access healthcare in rural vs. urban locations [186].

8https://www.optum.com/content/dam/optum3/optum/en/resources/sell-sheet/impact-pro-sell-sheet.pdf
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(4) Limits to prediction: The prediction of similar tasks such as triage prioritization have been
shown to have strong limits to prediction, among physicians, nurses, and computer pro-
grams [22]. Optum’s white paper on their ImpactPro model claims an 𝑅2 value of 0.295 for
their cost-based risk prediction model [135]. It is far from clear that this meets the bar of high
accuracy for such a consequential decision about patients, and Optum had no measures in
place to test whether patients who would eventually be classified using this model accept the
model’s performance. As we have seen with LYFT (Appendix A; Robinson [153]), patients and
healthcare providers can have strong opinions on what accuracy threshold is acceptable.

(5) Disparate performance: Optum does not provide evidence of any notion of fairness being
satisfied by their model. Obermeyer et al. [134] highlight alternative target variables that can
lead to more calibrated models. But given that different demographic groups have different base
rates, all decision-making systems will be subject to difference in performance [9]—regardless
of the choice of target variable.

(6) Contestability: Patients cannot challenge the outcomes from Optum’s algorithm. One mecha-
nism to provide some level of recourse is that while patients above the 97th percentile of risk are
directly enrolled in the high-risk program, those above the 55th percentile of risk are referred
to their primary care provider; this can provide some amount of recourse to the patients who
are not directly enrolled in the high-risk program based on the algorithm’s recommendations.

(7) Goodhart’s law: If patients are classified as high-risk, they get access to better healthcare and
in some cases as assigned a 1-1 healthcare provider [70]. Patients are often eager to get these
perks, since they provide better and higher priority care [178]. In a state with bad existing
healthcare, patients have many incentives to misrepresent their conditions to get access to
better healthcare [165].

B.8 Life insurance risk prediction in Velogica.

Velogica is a life insurance pricing tool from the company SCOR. On its webpage9, Velogica makes
the following claims (emphasis ours):

• 90% of underwriting evaluations within one minute
• 24/7 application submission capability
• Thousands of applications processed weekly
• Sales process and decision that takes less than 15 minutes
• Human underwriting on less than 5% of applications
• Validated risk assessment effectiveness
• Increased application flow
• Underwriting decisions in less than a minute
• Lower acquisition costs
• Lower underwriting costs
• Consistent underwriting assessments
• Success across distribution channels
• Risk participation of a life reinsurance leader

(1) Intervention vs. prediction: Similar to creditworthiness, changing the payment structure
could help decrease the probability that a given customer will lapse. An intervention focused on
helping a given customer avoid lapse would be more useful than predicting who is most likely
to lapse and charging them a higher premium. However, life insurance companies profit from

9https://www.scorgloballifeamericas.com/en-us/solutions/us/Pages/US-Velogica.aspx
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lapsed policies and lose money on those who keep their policies; this leads to higher premiums
being charged to customers upfront and increases the probability of lapse [75]. That is, higher
premiums lead to a feedback loop; they put people at higher risk of lapse.

(2) Target-construct mismatch: The construct is policy risk posed by an applicant and the target
is mortality or policy lapse due to lack of payment. In many cases, individuals might lapse on
paying insurance premiums because of lack of information about when or how to pay [132] or
forgetfulness [75], rather than any change in their ability to pay or their mortality risk. This
would indicate higher risk but occurs only due to lack of knowledge or information about how
to pay life insurance premiums and indicates a mismatch between the construct (policy risk)
and its operationalization in the form of mortality or policy lapse. In some cases, life insurance
companies might expect policies to lapse since they can benefit from the upfront costs paid by a
customer [75]. In this case, modeling policy lapse as the target variable is a valid design choice
for the company, but diverges from the notion of “risk-based insurance” as it is commonly
understood. In addition, it shows how the company’s goals (profitability) diverge from society’s
goals (widespread access to insurance).

(3) Distribution shift: The model only has access to data from people who were underwritten
using a life insurance policy in the first place, and might not generalize to atypical populations
or those who are currently underserved.

(4) Limits to prediction: Velogica has not released any public details about the accuracy of their
models. While Velogica publicly claims that its model has been validated [73], there is no
information about how the validation was carried out or how well the model performs.

(5) Disparate performance: Velogica uses several features which are correlated with sensitive
attributes such as race. For example, they use criminal history as a feature in their model.
This is correlated with race and could lead to worse outcomes for Black people. Black people
also have higher mortality rates compared to White people [68]. This difference in base rates
implies that a calibrated model cannot have equal false positive rates across races. In this
context, the definition of fairness used is a normative question. Far from engaging with this
question, Velogica does not provide any information about its definition of fairness or data
about outcomes by race.
The history of life-insurance is marked by unequal treatment of Black people. In many cases,
insurers did not allow Black people to purchase policies, or if they did, only gave them insurance
for funeral money [113]. In this context, treating insurance as a problem of statistical disparity
does nothing to rectify long-standing cycles of racial disparity.

(6) Contestability:When life insurance companies have used automated underwriting, they have
found that resolving appeals is harder because there is no human who made the initial decision
who can be consulted about their logic for adverse actions [15].

(7) Goodhart’s law: One of the items Velogica uses to determine insurance rates is answers to a
self-reported questionnaire, which can be easily gamed by candidates to get favorable premiums.
Life insurance companies, including Velogica, use results from medical exams and lab tests to
price life insurance policies [122]. Many websites advise candidates who are getting tested in
a medical exam for life insurance on how to perform better, for example, by not consuming
nicotine or tobacco 12-24 hours before an exam [89, 156].

C INVENTORY OF PREDICTIVE OPTIMIZATION ALGORITHMS

On our project website, we present 47 potential applications of predictive optimization collected
from our list of 387 articles, Kaggle contests, and datasets. To code each source, we selected each
application of decision-making algorithms mentioned in it. For example, a New York Times article
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published in 2020 is titled “Is an Algorithm Less Racist Than a Loan Officer?”. Based on this article,
we included automated loan decisions as one example of a decision-making algorithm. Then, we
checked to see if this application met any of our three criteria: (1) a real-world example of such a
prediction exists; (2) a Kaggle dataset or contest exists for this prediction task; (3) the prediction
task is referenced by an academic paper as a potential application. If it met any of these criteria, we
assessed whether the application fit into our definition of predictive optimization, and added it to
our list.
The first two authors conducted the coding. Each source was initially coded by either one of the
authors. Once all sources were coded, both authors went over the list and came to a consensus
about the coding decisions. The first set of collection and coding was done during March 2022,
with a second pass done in February 2023.
Some applications, notably recommender systems, don’t fit precisely under our definition of
predictive optimization, but we decided to include them. Much of our analysis still applies to this
category, although it mainly addresses individual harms, whereas it is the structural harms that are
more important [16].
We release our list of 47 applications and their corresponding sources on our website https:
//predictive-optimization.cs.princeton.edu/. We note that this compilation is a work-in-
progress and we welcome suggestions for new applications.
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