EE An official website of the United States government Here's how you know -~

18F Ourwork Work withus About18F Guides Blog n

Implementing rules without a rules engine

By Ed Mullen
Published on October 9, 2018

data access public benefits technical guides

Many government programs establish rules that define the way the program
will be implemented. This can include eligibility rules that are defined in Follow 18F

regulations and policy, as is the case with many federal health and human Q 18F on GitHub 2
services programs. Or it can include rules established to improve the quality of
data, such as federal spending submitted to USAspending.gov under the $‘J 18F on Twitter

DATA Act. In order to operate these programs, the rules are turned into

i@ 18F on Linkedin

business logic that drive technology systems used on a daily basis and
automate much of the work. ﬁ RSS feed

Frequently when these systems are developed in government, there is the
assumption that if you've got rules, you're going to need a rules engine. But
this is ultimately a false assumption. Business rules can be (and frequently
are) implemented as just another module in the code, without the use of
a rules engine. This is how we've done it at 18F.

Business Rule Engines, or BREs, facilitate the process of writing, managing,
and executing business rules. Often, they’'re also rolled up into tightly coupled
products with other business intelligence features and offerings. These
“solutions” can be much more complex than what’s needed for the core task:
implementing rules. And adopting this complexity comes with a cost. You
limit the pool of people who can help maintain your rules over time, increase
your dependency on a vendor, and incur proprietary licensing costs. (While we
love open source software, even open source rules engines can be an overly
complex solution to a problem more easily solved.) Even the core utility of
writing and managing rules with a business rules engine can lead to the need
for specialized expertise or roles to operate an extremely niche product.

But there is a simpler way to approach this challenge: policy people and
engineers can effectively work together to code the logic without needing
the mediating rules engine product at all.

Implementing rules with modern
programming languages

Many modern programming languages emphasize the ability to express
business logic elegantly, through straightforward abstractions, concise and
meaningful APls, and embedded, domain-specific languages. Modern
programming languages have all the features, flexibility, and expressivity
needed to implement a rules-based system, without the need for a
specialized, proprietary product.

Two recent projects illustrate our approach. In both cases, we had to define
rules so that multiple parties could submit data, have it run against the rules,
and then receive the results. We could have used a rules engine for these
scenarios. But in both cases, we decided instead to write our business rules
using SQL.

We chose SQL to encode our rules because it's:

Designed to operate over data

Application-independent

Very well understood by a wide variety of people (including non-developers)

Fairly legible for non-experts

A mature language and an ANSI standard

Here's how that choice played out on two distinct projects.

Data validation for the DATA Act

Under the DATA Act, a variety of federal agencies are required to submit
detailed spending information to a central store for exposure to the public at
www.usaspending.gov. We needed to collect and validate financial data

submitted as simple CSVs. A number of validation rules are applied to
incoming data submissions to guard the accuracy of the data.

The DATA Act team evaluated a number of rules engines and technologies to
implement these validations, and settled on expressing each rule in SQL. The
team chose SQL for its expressiveness, speed, familiarity of both the
development and business teams, and for not restricting other development
choices. The shared, well-understood language shaved off significant startup
cost for everyone involved and will simplify future maintenance.

Evaluating eligibility via a central eligibility rules
service

Our recent eligibility rules service project 2 was specifically aimed at

answering the question of whether it would be possible to build a single,
central rules web service that states could use to help them determine
eligibility for health or human services programs that are managed by federal
agencies but administered by states. To help answer this question, we built a
prototype eligibility web service for a sample federal program. The rules
service receives anonymous application data, analyzes the data against the
eligibility criteria, and sends back a response that expresses whether the
applicant meets the criteria.

The eligibility rules service allows program staff to define a set of rules
describing eligibility criteria (rules) for benefit programs, then apply those rules
to applicant information to help determine eligibility. We needed a rules format
that could express the logic of a wide variety of rules, yet that would also be
easy for program owners to read. We chose to create a simple centralized web
service that applies SQL rules to submitted data and returns eligibility results.
By doing so, we've avoided licensing costs, dependencies on specialized BRE
expertise, and created a more simplified product that can be easily managed
and audited. At the same time, we've created a path forward for states to
break their own rules engine dependency and reduce their technology
management burden.

On both of these projects, building our rules in SQL was ultimately the
preferred option because it's a well and broadly understood language, avoids
procurements, and allows for greater openness. And through both of these
projects, we learned that it's not only possible, but actually preferable to do
so, even when working within the context of a complex government program.

The advantages of a lighter-weight
approach

Unlike using a complex, off-the-shelf rules engine product, writing rules in a
well-understood programming language (such as SQL, Python, or Ruby) has
several distinct advantages.

It facilitates cross-functional collaboration on
your team.

Rules engines make claims about the ability of non-developers such as
program or policy staff to adjust rules without the need for a developer’s help.
In practice, however, a subject matter expert on the rules engine product itself
is generally required, adding additional layers between the policy and the
programmers.

Working in cross-functional teams (where product, design, engineering, policy,
and business experts work closely together as a tight-knit team) is a critical
contributor to the success of our work at 18F and on agile software projects in
general. This principle extends to codifying rules in systems. When you include
the policy and business people on the development team from the start, and
they work collaboratively with the software engineers to program the rules,
there is greater assurance that the rules are interpreted and implemented
correctly while avoiding the overhead of a rules engine. It just takes some
effort to build those bridges and get the conversations rolling.

It’s supported by a robust ecosystem of talent.

Using a common, well-understood programming language such as SQL allows
you to draw upon the resources and expertise of expansive communities built
around these widely-used programming languages and opens up access to a
much larger ecosystem of support.

Any challenges you face with one of these languages has likely been faced
and addressed many times over by the community. These languages are well
documented, with a community of expert knowledge online. The costs and
effort of hiring vendors or individuals are more reasonable, as you are not
competing for scarce expertise. By contrast, when you’'re dealing with a
smaller, proprietary system, you're left with a smaller, potentially expensive
pool of experts to draw upon.

It fosters openness and accountability.

When you use common programming languages to describe the rules in code,
you open yourself to the benefits of open source software: improved quality,
security, reusability, and trustworthiness. The code can readily be shared

through a public code repository, as you can see with the DATA Act rules on
GitHub [#. Federal oversight bodies as well as the public can review your code
and see exactly how the rules are being implemented, creating confidence that
the policies set by the federal and state agencies are being accurately applied.
Non-governmental partners can view the rules as implemented and integrate
public APls or reuse your rulesets to aid their clients in determining their best
options. Government partners can repurpose the rules without the need to
procure the same rules engine. Legislators could use the code to run tests
against test data to investigate impacts of potential legislative changes.

Take the easier approach

If you’re building a rules-based system, don’t assume that you need a
separate business rules engine product. Rules can be implemented more
easily and with less overhead by cross-functional teams working to describe
the rules and policy directly in code using general purpose programming
languages like Python, Ruby, etc. This approach opens you to well-supported
communities that can more readily be accessed to support the maintenance of
the rules and systems over time. It also creates opportunities for openness
that can increase reuse, collaboration, trust, and integrity.

18F is always available to help work through questions like this. Feel free to
reach out to our team at inquiries18F@gsa.gov to set up a time to talk.

This post is largely a distillation of ideas from a number of 18F alumni,
including Tony Garvan, Catherine Devlin, Becky Sweger, and benefitted from
the guidance of CM Lubinski, Greg Walker, Ryan Hofschneider and Vraj

Mohan.

< Previous post Next post »

Am | doing this right?: Antipatterns in agile Exploring a new way to make eligibility rules

contracting easier to implement

Modular contracting and Exploring a new way to The 18F Public Benefits

working in the open make eligibility rules Portfolio reflects on the
o | easier to implement last year

Working in the open is a key component of

building frust between governments and When federal agencies issue a policy Pairing our deepening domain knowledge of

vendor partners. Read about how the State change, say income eligibility guidelines, the unique nuances of benefits

of Alaska is using openness and code that policy gets communicated down to the administration and delivery across programs

sharing to foster greater trust between states as text on the Federal Register or via and levels of government with our core

government project teams and vendor

PDF. This translation of federal policy into expertise in modern technology and digital
teams as part of a large legacy system many state systems creates opportunities service delivery, 18F’s Public Benefits
overhaul. for implementation errors. Portfolio team helped empower our partners

to take some important leaps forward to rise
to the critical challenges of the current
moment, and we’re thrilled to highlight
some of their achievements from this past
year.
18F Pages Policies Contact Social
Our work Linking_policy Get in touch @ GitHub &#

Work with us to plan successful

projects, choose better Work with us Open source policy Press W Twitter &
vendors, build custom software,

_ About 18F Vulnerability Report a bug(? in Linkedin
or learn how to work in new , e
disclosure
ways. Guides Join 18F
Code of conduct
.

Contact

18f.gsa.gov
GSA An official website of the GSA's Technology Transformation Services

About GSA FOIA requests Office of the Inspector General Privacy policy

Accessibility support No FEAR Act data Performance reports

Looking for U.S. government information and services? Visit USA.gov

