
July 2020

Building and Reusing
Open Source Tools for
Government
Software for Public Benefit Should be Open
Source by Default

Mark Lerner, Allison Price, Hana Schank, & Ben Gregori 

Last edited on July 10, 2020 at 1:08 p.m. EDT



Acknowledgments

This research and report would not have been
possible without the insights and perspectives of a
wide range of individuals and partners, all of whom
are passionate about open source government
solutions. Internally at New America, we benefited
from the guidance, insights, and editing of Cecilia
Muñoz, Tomicah Tillemann, Dahna Goldstein, and
Karen Bannan. We would especially like to thank the
Rockefeller Foundation for supporting our work and
serving as a thought leader on digital transformation.

Interviewees

Marianne Bellotti, Rebellion, formerly U.S. Digital
Service, Auth0

Sebastian Benthall, Research Fellow at the
Information Law Institute at New York University

Sean Boots, Technical Advisor for Policy at the
Canadian Digital Service

Alex Gaynor, Chief Information Security Officer of
Alloy, formerly U.S. Digital Service, emeritus member
of the Python Software Foundation Board of
Directors

Marc Jones, General Counsel at CivicActions,
former Counsel at Software Freedom Law Center

Jeff Maher, Head of Software Development at the
Canadian Digital Service, formerly Ash Center
Technology and Democracy Fellow at Harvard
Kennedy School

Giuseppe Morgana, Digital Director at the New
Jersey Office of Innovation, formerly U.S. Digital
Service

Kevin O'Neil, Director, Data & Technology, The
Rockefeller Foundation 

Chukwudi Onike, Senior Associate, Data &
Technology, The Rockefeller Foundation

Denis Pitcher, Advisor to the Premier of Bermuda on
FinTech

Josh Ruihley, Senior Technical Advisor at the
Canadian Digital Service, formerly Director of
Product and Custom Partner Solutions at 18F

Adrienne Schmoeker, Director of Civic Engagement
and Strategy, and Deputy Chief Analytics Officer for
the City of New York

Sherri Trivedi, Director of Design at U.S. Digital
Service, formerly GitHub

Cori Zarek, Director of Data + Digital at the
Georgetown Beeck Center for Social Impact +
Innovation, former U.S. Deputy Chief Technology
Officer

Inspiration

Many organizations and people paved the way on
this hard work, making it simpler for us to collect the
information and produce this resource. While there
are far too many to name, we wanted to particularly
provide thanks to these people and organizations for
laying the foundation.

The UK’s Government Digital Service

18F

The Canadian Digital Service

The Open Source Institute

GitHub

The Consumer Finance Protection Bureau

• 

• 

• 

• 

• 

• 

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 2



About the Author(s)

Mark Lerner is a fellow in New America's Digital
Impact and Governance Initiative and Public Interest
Technology program. Lerner is an engineer,
strategist, and design advocate with expertise in
digital transformation. He focuses on empowering
teams and improving critical services through
technology and design.

Allison Price is a senior advisor with the Digital
Impact and Governance Initiative (DIGI) and the
executive director of Blockchain Trust Accelerator
(BTA). The DIGI team at New America is developing
the next generation of technology platforms to
transform the way governments deliver value for
citizens. The BTA is committed to advancing
blockchain technology through research and
innovative pilot projects designed to address some of
the world’s most persistent challenges like
transparency, identity and corruption. 

Hana Schank is the Director of Strategy for Public
Interest Technology at New America, where she
works to develop the public interest technology field
via research, storytelling and fostering connections.
She founded and edits The Commons, a publication
for people working in and around government
innovation efforts.

Ben Gregori is a policy analyst for the Digital Impact
and Governance Initiative (DIGI) and the Blockchain
Trust Accelerator (BTA) programs at New America.

About New America

We are dedicated to renewing the promise of
America by continuing the quest to realize our
nation’s highest ideals, honestly confronting the
challenges caused by rapid technological and social
change, and seizing the opportunities those changes
create. 

About Digital Impact and Governance
Initiative

The Digital Governance and Impact Initiative (DIGI)
develops technology platforms that transform the
way institutions deliver value for citizens. We work
with partners in government and the private sector to
create modular, interoperable technology solutions
built on open source code that address key
challenges facing the public sector. 

About Public Interest Technology

New America’s Public Interest Technology team
connects technologists to public interest
organizations. We aim to improve services to
vulnerable communities and strengthen local
organizations that serve them. 

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 3



6

6

7

9

9

10

13

15

18

18

21

25

27

28

28

30

31

Contents 

Overview

Who Should Read this Report

The Structure of this Report

Section One: An Overview of Open Source

What is Open Source Software?

Why Use Open Source?

Five Paths to Open Source Software in Government

Common Concerns and Questions

Section Two: Building Open Source Software

Working in the Open

Utilizing Open Source Communities

Starting Open Versus Becoming Open

Section Three: Using Open Source Software

Finding the Right Open Source Solutions

Following the Terms of a License

Determining Suitability of an Open Source Tool

Incorporating Existing Open Source Tools

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 4



32

32

33

34

35

35

37

38

41

42

42

42

43

43

43

44

Contents Cont'd

Section Four: Managing the Details

Develop Policies to Facilitate and Standardize the Use of Open Source
Solutions

Ownership

Managing Vendors

System and Data Interoperability

In-House Technical Talent

Additional Resources

Checklist for How Governments Can Leverage Open Source Solutions

Open Source Project Hubs for COVID-19

Further Reading

Primers on Open Source

Benefits of Open Source

Government Open Source Resources and Projects

Open Source Best Practices

Security and Open Source

Legal and Open Source

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 5



Overview

In this report, we outline a high-level framework for approaching the

development of public services using open source software (OSS) principles and

practices to maximize the reuse of existing software. Open source principles are

an integral part of well-designed public technologies. Software for public benefit,

such as election platforms or benefit case management systems, should always

be open by default.

This report defines OSS, the benefits and risks associated with it, and provides

steps for using open source principles in your organization or agency. While there

are many important principles for building good software products, such as user

feedback, sustainability, and open data, we will be focusing on the value of OSS

in this resource. Open source software is still software, and while we won’t be

going into all of the components of good software development in this report, it is

important to learn from and follow known software development best practices.

For example, approaches such as agile development define clear goals, build

iteratively, and design with users in mind. We find GOV.UK and the U.S. Digital

Services Playbook to be great starting points for understanding best practices

for creating government digital services.

Who Should Read this Report

This resource is intended for public servants, from executives to program

managers, who are building the next iteration of digital government solutions.

We initially undertook this research with the goal of providing useful information

for practitioners, and we understand that there are many different types of

practitioners in the government technology ecosystem.

We’ve outlined below how we anticipate different audiences can best harness

this content.

Government Leaders: We aim to inspire government leaders to think

differently about technology, and to provide them with a roadmap for how

to bring OSS into their country, city, county, state, and agency software

and services development lifecycle. This report provides foundational

knowledge that executive decision makers can tap when setting

organizational strategy.

Technology Leaders: Directed by the strategy and policy set forth by

organizational leadership, technology implementers translate desired

public outcomes into technical products. They enact the agenda using

technology, aiming for on-time, on-budget, and effective delivery of

• 

• 

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 6

https://www.gov.uk/service-manual
https://playbook.cio.gov/
https://playbook.cio.gov/


services. This report outlines how to make open source a core part of the

implementation of government services, and provides arguments for why

OSS is the best choice for government services.

Innovation Officers: Innovation officers fall into a special category of

government leaders, as they tend to be highly technical and hold positions

of authority in their organization. We look to innovation officers as a

driving force, a catalyst to lead colleagues along government services

modernization efforts. This report provides this cohort with the research

needed to support this work, as well as actionable recommendations for

their efforts.

Decision makers including government officials (e.g. legal,

procurement, security): OSS presents a very different operating model

than what government is traditionally used to. Software is built or

procured at no cost, and ownership is less important than license

provisions since open source licenses vary in their permissiveness. This

cohort of officials have a duty to reduce the risk of government projects.

This report provides information regarding security, licenses, ownership,

and costs, arming these approving government officials with the

knowledge they need to confidently assess open source at its true value,

rather than as an unknown entity.

Software for public benefit, such as election

platforms or benefit case management systems,

should always be open by default.

The Structure of this Report

The research is broken into four main sections. While we encourage you to read

the entire report, we understand that you might want to review the sections that

pertain most to your needs.

Section One: An overview of open source

This section is a primer on open source in government, and answers some key

high-level questions that many newcomers may have. All readers should read this

section as it will help grow their baseline understanding of open source, and

• 

• 

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 7



correct some common misconceptions about the feasibility of government open

source solutions.

Section Two: Building open source software

In this section, we provide guidance for organizations looking to build their own

open source systems and outline considerations to keep in mind.

Section Three: Using open source software

An outline of recommendations on how to best use existing open source

software. In this section, we cover topics ranging from finding open source

solutions to understanding the licenses of open source software that you might

use. Readers looking to find open source tools to bring into their organization

should read this section.

Section Four: Managing the details

We discuss some of the details that should be kept in mind when moving your

organization into a more holistic open source strategy. These details are common

regardless of whether you build new software, or use existing OSS. Topics such as

open source implementation policy, in-house technical talent, and copyright fall

into this section.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 8



Section One: An Overview of Open Source

What is Open Source Software?

Open source software (OSS), by definition, is “software that is readily available

with its source code and license, free of cost to anyone who wants to study,

change, modify, or distribute it,” as per the World Bank’s Open Source for

Global Public Goods report. For people unfamiliar with the software

development world, OSS is essentially chunks of code that are available online

for anyone to use. While many non-coders may think software is written from

scratch, in fact, much of the modern development process involves piecing

together these blocks of code to create new applications. For example, have you

ever had to reset your password to access an app? It is a common use case. If a

developer needs to add that functionality to a new project, the developer can

easily take existing code for resetting passwords and incorporate it into the new

project rather than writing that code from scratch.

All kinds of software can be open source, from operating systems and under-the-

hood utilities to web browsers and user-facing websites. A 2020 report by

Synopsys notes that the majority of the world’s software is open source, and that

nearly all software has some open source component to it. Chances are high that

your organization is already using OSS, either directly or through other software

that depends on it.

At a bare minimum, OSS is simply releasing the software’s source code publicly.

One version of this is called coding in the open—publishing the source code of a

system or application without taking care to ensure its reusability. While still

valuable, the benefits of coding in the open fall short of what’s possible with OSS.

A more robust use of the term includes providing an open license that permits

broad use of software, documentation, and guidance so it can be used by others,

and encouraging community engagement to facilitate organized collaboration

and solve common issues.

Indeed, when fully implemented, OSS can lead to collaboration, innovation, cost

savings, and sustainability—all by building software openly and for reuse. Open

source aspires to a new way of thinking about ownership and accountability,

something built by and responsive to the collective of users rather than purely

traditional market mechanisms. Adopting open source practices as an

organization means moving an organization’s culture away from one of

proprietary holdings and closed ownership, and towards collaboration and

working in the open.

OSS is released with specific licenses that outline the permitted usage of its

source code. The licenses outline terms of use, such as requiring attribution of

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 9

http://documents.worldbank.org/curated/en/672901582561140400/pdf/Open-Source-for-Global-Public-Goods.pdf
http://documents.worldbank.org/curated/en/672901582561140400/pdf/Open-Source-for-Global-Public-Goods.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2020-ossra-report.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2020-ossra-report.pdf


the original authors, that must be followed to use the software. When using open

source tools, it is important to review the license to ensure you abide by its

allowances and restrictions. When releasing your own OSS, it’s necessary to

provide a license that makes clear what your resources can be used for. Common

licenses are reused across many open source projects, such as the MIT license

or the GPL license. The Open Source Initiative maintains a strongly vetted list

of common open source licenses used by many in the software industry. By

using common licenses, projects reduce the burden of understanding unique

license terms and provide clear and well-understood terms to the use of their

resources.

Why Use Open Source?

The benefits of using open source principles is well understood and documented

by the software community around the world. Anna Shipman, former open

source lead with the United Kingdom’s Government Digital Service, articulated

an excellent set of benefits for open source work. Sean Boots and Josh Ruihley

of the Canadian Digital Service expand on these benefits in their own analysis

of the benefits of open source. We have provided a brief summary of benefits

here for those who are new to open source.

Maximizes Resources and Improves Efficiencies

Maximizing existing resources and pursuing cost-effective solutions is an optimal

strategy in government. Many civil servants are asked to do more with less.

Equally true is the fact that most problems that civil servants encounter have

been solved before, likely by a different office or a different jurisdiction

altogether. Building on and reusing other organizations’ work can decrease

opportunity costs and allows teams to get started making changes more quickly.

When starting a new project, significant effort must be spent on discovery, user

needs and wants, development and testing, including security and usability.

Using open source code reduces the time and cost of this process and can be a far

more efficient route. Reusing existing code and processes can improve the speed

of development and deployment, reduce the development costs, and allow for

best practices. For example, there may be fewer vulnerabilities and bugs in an

application since the source code has been worked on by many people, all of

whom have the opportunity to point out and address these issues. These benefits

all build upon one another as well—the more your organization uses open source

solutions, the more benefits you see from it.

Open source software is free to use. You can copy and use the source code

without payment to the original creators, and use it in whatever way you would

like (consistent with the software license). Proprietary software often comes with

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 10

https://opensource.org/licenses/MIT
https://opensource.org/licenses/gpl-license
https://opensource.org/licenses
https://opensource.org/licenses
https://gds.blog.gov.uk/2017/09/04/the-benefits-of-coding-in-the-open/
https://gds.blog.gov.uk/2017/09/04/the-benefits-of-coding-in-the-open/
https://digital.canada.ca/2020/02/24/why-open-source-matters/
https://digital.canada.ca/2020/02/24/why-open-source-matters/


license fees, contract agreements, and may be packaged as a bundle, which

means you may pay for tools and features you don’t need.

However, this doesn’t mean that there are zero costs associated with using open

source software. While the code itself is free and open, there are other types of

cost considerations to make, such as server infrastructure or technical talent to

modify the source code and paid support options. Still, these costs are often

much less than the typical license fees associated with proprietary software. In

addition, most of these costs are a constant regardless of whether you are using

open source tools, building your own software, or using proprietary solutions.

Improves Trust and Increases Government Transparency

The benefit of transparency goes beyond creating accountability—it’s also a core

part of working on public services. The public should be able to see the work that

their government is doing for their benefit. Transparency makes it clear that

progress is being made on important services and issues, and keeps the public

informed on future plans. Open sourced work encourages active feedback and

participation from the public, who can now view the progress as it happens and

hold more confidence and trust in the work. As the Department of the Interior

puts it, “By using open software and working in the open, you remove barriers to

critical evaluation and participation from others. Inviting critique from others

can be uncomfortable, but it increases the likelihood that the final product is

more effective at meeting the needs of multiple stakeholders inside and outside

government.”

The public should be able to see the work that their

government is doing for their benefit.

When using OSS, either by building it or using other OSS applications, it’s easier

to explain how the tools work. Nothing is proprietary or hidden. Instead, the code

is accessible and available for review by anyone. This makes discovery of efforts

within and across government much easier. This is important because it’s fairly

common for a government organization to have duplicate or competing projects

simply because they didn’t know of each other's existence. The transparency

provided by open source helps governments discover tools that are already vetted

by other organizations including their own government organization, and allows

them to quickly and cost-effectively adapt those solutions to their immediate

challenges.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 11

https://18f.gsa.gov/2018/05/24/what-agencies-have-to-say-about-working-in-the-open/


More Sustainable Tools, Less Vendor-Dependence

Using OSS greatly improves the flexibility of an organization by allowing the use

of multiple vendors and giving developers the ability to share software with

others in the organization, and use or reuse as much of the software as needed.

OSS guarantees that an organization and the public have full access to the source

code without needing any permissions from the vendor.

Regardless of whether you open source your own tools or use existing

open source tools, you are still ultimately responsible for the service.

Using open source software does not put the onus on other contributors—as the

service owner, that still falls on your shoulders. For example, you still hold the

responsibility of ensuring security and meeting users’ needs. However, using

open source tools makes each of these easier to achieve, and enables a

community of like-minded contributors to support each other in achieving these

goals. Open source software also offers flexibility in moving between tools that

proprietary services seldom offer.

Grants Full Control of the Software

Much of the software that governments and people rely on is closed source and

proprietary. It is owned by its developer. When there are bugs or other issues

within the software, the developer is the only one that can fix it. Similarly, if

software needs to be upgraded, integrated, or changed, only the company that

owns the software can make that change. With OSS, any organization—including

software users—can fix or change the software. OSS has roots in a philosophical

belief that software should be free and open for all to use and learn from, as

described in this blog. By using OSS, governments can maintain control over

their software, tools, infrastructure, and services.

Encourages Good Development Practices

Open sourcing work encourages good development practices by creating public

accountability. Put simply, if everyone can see something, then it has to be

good enough to release to the public right from the start. The quality of the

work, its documentation, code reviews, version control, and other factors are all

held to a high standard, encouraging good software development practices. Open

source also brings critical considerations, such as security, software design,

documentation, processes, and even ownership, immediately to the forefront.

Simplifies Collaboration and Facilitates Innovation

Collaboration of all kinds is simplified when work is done in the open.

When software is openly available, there are no required special approvals,

agreements, or tools for code to be shared. When the software is well

documented and supported by a community, it’s simple for new collaborators to

start using it and contributing to it. New team members are able to find all project

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 12

https://www.digitalocean.com/community/tutorials/Free-vs-Open-Source-Software


information since it is available openly. Developers can access and perform work

using their tools of choice, rather than proprietary tools. In the current closed-

source state, two different teams at the same government agency might require

weeks or even months of time to secure the approvals necessary to share work. 

With open source software, collaboration can start immediately. Inviting

people to collaborate on open source projects is much simpler, as the work to

open it up broadly has already been done. This is especially helpful in times

calling for rapid response, such as during a public crisis, when governments can

tap into existing software and communities to build solutions that are already

open sourced to the public.

Fosters growth of common solutions

Open source collaboration is a learning experience that allows both

authors and contributors to exchange ideas about how each developer

might solve a specific problem. Even when software has been developed,

contributors may apply the software in a different way than the author had

originally intended, teaching everyone something new in the process.

Collaborators can use open source work as a starting point in solving their own

versions of similar problems, saving valuable time and growing the original base

of work. For example, the United Kingdom’s Government Digital Service 

released their Notify platform as open source, allowing other governments, 

such as the government of Canada, to adopt it for its own purposes by

modifying it to support multiple languages. Additionally, open source solutions

reduce duplicative work by allowing groups to collaborate on solving common

problems with common solutions, rather than creating competing or diverging

solutions. By making the work open source, organizations create the opportunity

for creative expansion on top of what has already been done.

Inviting critique from others can be uncomfortable,

but it increases the likelihood that the final product

is more effective at meeting the needs of multiple

stakeholders inside and outside government.

Five Paths to Open Source Software in Government

Broadly speaking, there are five paths towards adopting OSS in government.

These paths differ largely because of two factors: whether a solution is new or

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 13

https://www.notifications.service.gov.uk/
https://digital.canada.ca/2019/11/26/introducing-notify/


existing, and whether organizations use a solution they created or one created by

an outside entity. Here, we provide brief descriptions of each path, so that you

might recognize which one may apply to you. As you read through sections two

and three of this report, you’ll find that having your path in mind will help you

understand how our research applies to you.

1. Working in the Open on a New Solution

On this path, agencies and organizations create new software addressing an

unmet need. The software, part of a broader solution, is created specifically for

the purposes of a solution. The developers might use a vendor's services to

develop the software, having procured their services through a contract or grant,

or may utilize in-house technical talent to write the software. Alternatively, they

may have a partnership with a third party, such as an academic institution or

philanthropic organization. While existing software may be integrated with the

project, its main components require software to be written from scratch by

developers or software engineers.

2. Migrating an Existing Solution into the Open

Governments use existing software solutions for their services and processes. In

some cases, this software is old and unmaintained, though it still functions. Many

of these systems are called legacy systems, which simply means software systems

that are not being actively developed. You and your organization can move these

applications and services into the open, using principles and practices discussed

throughout this report. Legacy solutions will require review and some amount of

refactoring, to open up the source code. This review and refactoring can have an

added benefit of helping to make the software more secure, understandable, and

useful—both for the public and your organization. Updating and refactoring

legacy systems may not always be possible for a variety of reasons, from fragility

of the underlying code and lack of backwards compatibility, to missing relevant

expertise in a given programming language. When it is possible, it will take work,

but the benefits, including the ability to increase security, collaboration,

accountability, and transparency, are worth it.

3. Adapting an Open Source Solution to Meet Your Needs

Many of the standard problems that organizations have, such as inventory

management or case management, can be solved by open source solutions, but

they may still need customization to match your organization’s workflow,

language, or needs. For example, open source case management systems can be

easily configured to handle the particular types of cases your office processes.

When using this kind of software, you need less direct software engineering

talent than the first two paths, and instead should look for talent (either in-house

or contracted) that can support the configuration and maintenance of the

software.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 14



4. Using an Open Source Solution without Customization

In some cases, you can find an open source solution that solves your problem

directly, without any need for customization. While it might seem rare, consider

that Firefox, one of the most popular web browsers, is open source and requires

no customization to use. Open source software like Firefox is high-quality, easy

to use, and doesn’t require that much technical or development knowledge. In

these cases, the fact that the software is open source may not even be apparent to

the users even as your organization gains the benefits of the security, feature

updates, and larger community that the open source software provides.

5. Using Mixed-Source Software

Lastly, your organization might be using a mix of OSS and proprietary software as

a way to ease into open source principles. This path presents challenges, as it can

be unclear in vendor contracts what software might be required to be open source

and what might be public. Integration can often be difficult, too, since

interoperability can vary with custom build solutions. As much as possible, we

recommend avoiding this path and using open source software exclusively. When

this is unavoidable, clearly articulate the expectation of what software will be

proprietary and why, and require that all other software be made open source.

Common Concerns and Questions

The thought of using open source software instead of a commercial product

often elicits numerous questions and concerns. A few of the most common

questions about OSS include:

Q: Is Open Source Software Secure?

A: There is a common misconception that OSS is inherently less secure than

proprietary software, due to the source code being publicly available. The logic

for this is that if a malicious attacker has access to the source code, they can find

and exploit vulnerabilities. This argument relies on the assumption that a closed-

source piece of software is more secure simply because people cannot read the

source code.

However, the consensus in the security space is that open source code provides

an opportunity for better security practices over closed-source code. Open source

code can be reviewed by collaborative and independent security experts for

vulnerabilities, and these same reviewers can contribute fixes or work directly

with the authors to implement solutions to these vulnerabilities. Independent

and open code review makes solutions stronger and more secure. By contrast,

relying on obscuring code for the sake of security actually introduces more

security risks, as obscured code cannot be assessed by third parties and there

may be fewer people using it as a whole. This comes into play often in a

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 15



government setting where custom software was developed for exclusive use by

the organization. The Department of Defense states that studies in software

vulnerabilities “make it clear that merely hiding source code does not counter

attacks.” The Department of Homeland Security found in their research

that, “there was not an increased risk of low quality and malware in OSS

compared to proprietary software.“ The United Kingdom government’s

guidance states that by “keeping your code closed, you can also introduce other

risks and complications including deprioritisation of code review, [and]

additional costs and complexity of access controls.“

Independent and open code review makes solutions

stronger and more secure.

Obscure code also allows vulnerabilities to exist in the codebase in an unknown

or undisclosed state. Additionally, attackers do not need access to the source

code to take advantage of a vulnerability. Opening the source code allows

collaborative security partners to support in protecting against these attackers. In

short, when software relies on obscurity to enforce security, it assumes that

potential attackers don’t have other means to find and access vulnerabilities—

which they regularly do, especially when the most common attack vectors

have nothing to do with source code anyway

The most significant recommendation of the open source movement may be the

fact that many of the top security tools on the market are open source as well,

such as HashiCorp. These projects use more diligent security practices,

including rapid security patches, automated vulnerability detection, and

separation of sensitive information to stay ahead of security vulnerabilities. By

building these security tools as open source, the developers have created

tools that are often more transparent, accountable, and secure than

proprietary, closed-source tools.

Q: What are Open Source Licenses?

A: The OSS license ecosystem is robust, mature, and easily understood. Many

resources exist to support navigating licenses, such as the Open Source

Initiative’s list of licenses or GitHub’s choosealicense.com. Additionally,

there are technical legal experts that can assist with the interpretation of

common and uncommon licenses. With proper consideration and incorporation

of legal guidance, the risk of violating a license is small. Navigating this terrain

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 16

https://dodcio.defense.gov/open-source-software-faq/
https://www.dhs.gov/sites/default/files/publications/Open%20Source%20Software%20in%20Government%20%E2%80%93%20Challenges%20and%20Opportunities_Final.pdf
https://www.gov.uk/government/publications/open-source-guidance/security-considerations-when-coding-in-the-open
https://www.gov.uk/government/publications/open-source-guidance/security-considerations-when-coding-in-the-open
https://blog.eccouncil.org/the-top-types-of-cybersecurity-attacks-of-2019-till-date/
https://github.com/hashicorp/vault
https://opensource.org/licenses
https://opensource.org/licenses
https://choosealicense.com/


generally amounts to determining whether or not attribution must be given, how

your current systems and software are licensed, and how your licenses will be

affected when integrated with OSS licenses you use. GitHub provides a great

guide for understanding some basics of the legal side of open source.

Q: Is Open Source Software Kept Up-To-Date?

A: Just as with any software project, OSS varies in degree of maintenance. In

some cases, a project may be years old and not updated since it was launched.

(However, this doesn’t necessarily mean that the software doesn’t work). In other

cases, a project is actively maintained, often with a vibrant and well-organized

community supporting it. When using OSS, look for software that is actively

updated with security patches as well as releases of new features. Software that

hasn’t been updated for months or years likely will not receive attention when it

needs an update, such as when a security vulnerability is uncovered. Some well-

resourced open source organizations, such as the Apache Foundation or the

Linux Foundation, might themselves maintain open source projects, and

applications that come out of these groups are typically safer to use. In addition,

OSS that garners user groups, discussions, and communities should have

longevity and get regular updates.

Q: Will Using Open Source Reveal Policies Prematurely?

A: Code that implements yet-to-be-released policy should remain closed until the

policy is public so software implementation details don’t potentially complicate

the release of the policy. Government policies tend to follow particular paths to

being released, and openly publishing the software that implements a new policy

could give the public an incomplete or incorrect view of it. Once the policy is

public, the code supporting it should be immediately made public as well, to

demonstrate how the policy is being implemented. Afterwards, all further code

should be developed in the open. Developers working on this type of software

should coordinate closely with the release of the policy to ensure proper timing of

the software release schedule. GOV.UK has a detailed resource for what should

remain closed in these cases, which can be found here.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 17

https://opensource.guide/legal/
https://www.gov.uk/government/publications/open-source-guidance/when-code-should-be-open-or-closed


Section Two: Building Open Source Software

Depending on the size, mission, and complexity of your government

organization, you likely use custom-built software systems. Maybe your office

runs a custom database and processing system for a benefit application,

inventory and supply chain system, or public-facing website or mobile app. In this

section, we advocate for and provide concrete guidance on writing your software

in the open, as an open source system. By opening your source code to the public,

providing clear documentation, and allowing others to reuse it for their needs,

you can instill best practices, receive collaborative support on your systems, and

share your knowledge with other jurisdictions.

Working in the Open

When we talk about “working in the open,” we specifically mean publicly

publishing your work on software projects, including existing drafts, future

progress, and other work products. By definition, this is different from publishing

a single finalized version at a point late in the development, or once it’s

determined to be complete. Working in the open means performing the

actual work—the individual code changes, the code reviews, discussions,

project management, and more—in the open, for anyone to see. This type

of process has many benefits, such improving transparency, accountability, and

collaboration. With the exception of a small number of cases (e.g. building

software for a soon-to-be-released policy), software for the public benefit should

always be open source.

Through our research we found many lists of good practices for working in the

open, such as this list produced by GOV.UK. Here, we present a select

overview of good practices to follow when working in the open, as well as key

considerations.

Publicly Show Progress

When working in the open, all progress should be public. This includes

progressive and iterative changes to the code, as well as discussions about

changes, evolutions to documentation, and potential security flaws and bugs.

The source of truth for the software should be a publicly-available code

repository, hosted on a service such as GitHub. These kinds of services allow

simple online access to the code repository, and generally support a wide range of

other features, such as access control management, automated security scans,

and more. For example, with access control features, you can ensure that only

approved developers are able to submit code changes to the codebase, or to

approve proposed changes from third parties. Changes to the code should be

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 18

https://www.gov.uk/service-manual/technology/making-source-code-open-and-reusable
https://github.com/


made with small, publicly posted modifications (or “commits”) to that codebase,

which should be reviewed by an owner or maintainer of the codebase during a

code review, which should also be public.

By publicly showing progress, the software development team can ensure full

transparency, build a historical record of modifications and decisions, and allow

others to learn from the progression.

Opening More than Code

As the name implies, OSS’s source code must be publicly available. But stopping

there would fall short of following open source principles. Teams should

publicly share their project work and documentation. Project plans and

roadmaps should be made available so that contributors and the public can see

the long-term plan for the software. Research used to design the service should

be made available to increase transparency on the decisions for the service. Even

more granular project documentation, such as user stories, testing, and project

discussions can be made public to provide contributors the information they

need to understand how they can best support the software development and

maintenance. For good examples of this, see CA.gov’s, New Jersey’s Ask a

Scientist repository, and Canada’s VAC Find Benefits and Services

documentation.

Separate the General Solution

For your software to be most useful to others, it needs to be designed to solve a

generalized problem. Designing your software in this way means structuring the

architecture of the code so it can easily be modified for other uses. Keep the parts

of the code that are specific to your context separate from the portions of the

software that can address the general problem that other jurisdictions may face.

For example, if you have software that sends text reminders to certain city staff,

separate out the messages the software sends from its general ability to send

messages. Developing your software in this way allows other people and

organizations to take the code and reuse it for their purposes easily, without

having to make significant modifications.

Managing Sensitive Information

Most software systems contain sensitive information that should not be

accessible to the public. Even in closed-source systems, this information should

be separated from the codebase as a best practice to ensure the security of the

information. Developing in the open more heavily incentivizes this essential

security practice.

User data, also frequently referred to as personally identifiable information (PII),

should never be included in the source code of any application, especially open

source applications. However, sensitive information is more than just user data. 

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 19

https://github.com/cagov/covid19
https://github.com/newjersey/covid19-ask-a-scientist
https://github.com/newjersey/covid19-ask-a-scientist
https://github.com/cds-snc/vac-find-benefits-and-services-documentation
https://github.com/cds-snc/vac-find-benefits-and-services-documentation


Sensitive information also includes passwords, credentials, keys, and

certificates—effectively, any information that would give data access to

unapproved parties. This type of information is generally referred to as

“secrets,” and there are many best practices to follow to manage these secrets.

Software should never have passwords written directly into the code. Instead, the

best practice is to keep secrets separate from the source code in tools built for this

purpose (such as HashiCorp), with the running application to be given access to

this information only when necessary. In this way, even when the source code is

public, the public cannot access sensitive information. By keeping secrets and

user data out of your source code, you easily and drastically reduce any risk of

data exposure when using open source software.

By keeping secrets and user data out of your source

code, you easily and drastically reduce any risk of

data exposure when using open source software.

This simple best practice maintains a separation between the public source code

and the private secrets. By separating these from each other, you can publicly

open your source code without any worry of undue access to sensitive data or

systems. When opening source code publicly, take care to ensure that this

sensitive information is not included in the project's version history. If it is, there

are two ways to resolve this:

Change all of the secret information used. Reset these secrets, such as

passwords or credentials, so that old versions no longer allow access to key

data. Do not include these new secrets in the source code, but instead

separate them out. This fully ensures that the risk has been mitigated, as

long as the new secret information is not made public. This is the simplest

and most surefire way to secure your system after secret information has

been added to the codebase.

Remove all mentions of the secret information from the codebase, 

including from the historical record of the codebase. Version control systems

(which are highly recommended) store the full history of the codebase,

and simply removing a password from the code will not prevent people

from looking into the history to find it. This can be an arduous but critical

task. If even one instance is forgotten, it can lead to vulnerabilities and

breaches.

1. 

2. 

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 20

https://github.com/hashicorp/vault


Utilizing Open Source Communities

While working in the open is a critical part of open source software, creating a

truly open source solution also includes building and managing a

community. This community includes contributors, partners, maintainers, and

anyone copying the code and repurposing it for their use. Building and managing

a community takes work, but it provides an opportunity for expanded support

and collaboration. Aside from transparency and distributed lessons, a healthy

community may contribute to the source code, improving its quality or creating

entirely new features. For example, Mozilla developed a broad community in

their open source form generating tool, which the U.S. Digital Service

modified and repurposed to create the U.S. Forms System.

Creating a community around an open source government tool ensures that

governments from anywhere can engage with the software and find support to

help them adapt it to their needs. When you open source your own projects, you

openly invite other people and organizations to use and contribute to your source

code. To the extent that people outside of your organization contribute to the

project, they do so as coordinated volunteers. You still ultimately own and

maintain the system, and while there is not any expectation that public

contributors will be compensated for contributions, it does take time and effort to

create an environment where a community can thrive.

Building and managing a community takes work,

but it provides an opportunity for expanded support

and collaboration.

The most critical portion of building a community is understanding what you, as

the owner and maintainer of the software, want from the community. For

example, you may want the public to see your work for accountability, but may

not want code contributions. Alternatively, you may be looking to offer your code

to other jurisdictions with similar problems. Whatever the reason may be,

making a decision up-front will greatly inform how you actually go about

building and managing the community around your open source software,

including how you inform others of your work.

As you start building and engaging with a community around your project, you

will be publicly attached to the code—which is a good thing! It further creates

direct transparency and accountability, and allows the public to recognize you

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 21

https://github.com/rjsf-team/react-jsonschema-form
https://github.com/usds/us-forms-system
https://github.com/usds/us-forms-system


and your team as the maintainers and experts for this product. It also improves

your ability to publicly represent the project by providing a clear connection

between the public and the maintainers of the service. Structures should be put

in place to manage that interaction between the public and the maintainers, and

it should provide the public with a sense of community engagement. By building

an effective community, you give the public a place to engage with services they

depend on.

Building a Community

Building a community of contributors and enthusiasts incorporates practices that

relate to building communities of any kind. People need to be able to find your

community and understand what it is and how they can benefit from the code or

application. People who join should be able to clearly understand the software or

service you are building, and whether it might be useful to them. This clarity will

allow the public to self-select whether to join the community, or move on. 

GitHub provides a great guide to building a community that we

recommend. Below, we provide select considerations for building an open source

community.

Make your work visible and discoverable. This step applies regardless of

whether you’re looking to add contributors to a project, or just to share the project

with other jurisdictions. Some marketing is needed to let your targeted audience

know about your open source project. As with any communication and

marketing, determine your target audience first and find ways to inform them.

This can be via direct contact (e.g. emails, posts in LinkedIn groups or other

software or development communities like GitHub and Stack Overflow) or

indirectly (e.g. gaining placement in articles in news sources or on social media

platforms). One of the most difficult things to navigate in the open source

ecosystem is the discoverability of projects or finding a project that fits your

needs. As the producer of an open source project, you’ll need to put effort into

making your project easier to discover by tagging it on open source code hosting

services, publishing blog posts about it, and promoting it via your social and

personal networks.

If you want your community to contribute and support the codebase, provide

them with opportunities to engage once they join. For example, let the

community know how to stay up-to-date with the project, whether through

an email list, a public discussion forum, or following a Twitter account. Inform

them about the current state of the project, and any upcoming releases. Be clear

about how the project will be maintained and updated, and how they, as

contributors, can take part in it. For a great example of building an inclusive code

repository, see Microsoft’s GitHub repository for their application .

Set expectations upfront on how the project will be run. Clearly articulate

the various processes and statuses for the project. The public should be able to

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 22

https://opensource.guide/building-community/
https://github.com/microsoft/vscode


see how often the project will be updated, what processes are used to manage

contributions, what communication channels you will use, and even expected

timelines for the project’s lifecycle. This type of communication and clarity will

provide contributors and the public everything they need to know to be able to

understand and effectively engage with the project.

There should never be an expectation that the community will complete work

that you need for your product. Open source communities are not sources of free

labor. Instead, the community can provide insight and updates to the

codebase at their own pace, which will be proportional to how easily they can

engage with the project.

Prioritizing Documentation

Clear documentation is key to building an effective open source project. Good

documentation lays out the purpose and plans of the project in plain language,

and offers guidelines for engagement, contributions, licenses, and other

necessary elements of being a member of the community. It also outlines the

source code itself, writing in prose the structure and organization of the software.

With good documentation, your project will be easily understood by anyone who

comes across it.

Documentation must be simple enough that entry-level contributors can

understand the project and how to get involved. Detail the expected roadmap, so

that contributors and users can see the plans for future modifications and

improvements. Other forms of project documentation, such as research or short-

term project progress, should be available for contributors and the public to see

as well. For good references on projects that have prioritized documentation, see

the Atom repository and the previously mentioned VSCode.

It is critical to have documentation that explains the source code itself. In most

cases, this is documentation provided for contributors, maintainers, or the public

to refer to when using the software, such as integration general usage

instructions. Documents that describe the design of the source code are also

helpful for people looking to understand and reuse the code itself. High-level

documentation should be included to describe the structure and architecture of

the code. More fine-grained documentation should be in-line with the code itself.

Lastly, documentation on how the source code project is run should be available

as well. For example, documentation should clearly explain how code reviews are

performed on contributions, how third-party contributors can become

maintainers, what coding practices are expected of contributors, and how

members of the community are expected to conduct themselves. These forms of

documentation provide clarity, stability, and bring critical decisions up before

they are needed.

Managing Contributions to Open Source Projects

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 23

https://github.com/atom/atom/blob/master/CONTRIBUTING.md
https://github.com/microsoft/vscode


One of the core benefits of building a community is receiving collaborative

contributions. These contributions may be bug fixes, suggested features,

potential use cases, redesign specifications to allow for more generic application

of the software, or other types of modifications. Depending on how you build

your community, contributions may even come from people who are not software

engineers—for instance, translations of texts into different languages.

It’s a best practice for open source projects to include a contributor guide, clearly

labeled for people to easily find. Contributor guides let contributors know what is

expected of contributions. Contribution guides outline the process to contribute,

making it simple for contributors to engage with the open source project in an

organized fashion. For example, contributor guides may require that all code

adheres to a consistent coding style. GitHub provides useful advice for

building contributor guides, and the Atom and OpenGovernment code

repositories provide good examples to follow as well.

As mentioned previously, even if code is open source, that doesn’t mean anyone

can modify the code directly. Instead, people can suggest modifications, which

may be pulled into the codebase by the owners after a review. Code repository

hosting tools (such as GitHub) have simple access controls that let you manage

who is allowed to contribute to the codebase, and what processes they must

follow to submit their contributions. You should clearly communicate the policies

for how contributions are managed in your open source project, so that

contributors understand what processes to follow and can submit contributions

in a way that is easiest for you to manage. For example, you may require that

contributors create their own copy of the codebase (generally called a “fork”),

make their modifications on that copy, and then request that the copy be merged

into the original codebase pending your review. The OpenGovernment

repository has a good example of simple contributor guidelines.

Contribution policies should be outlined in a contributor guide included in the

codebase and documentation. As the owner and author of the software, you will

fill the role and responsibilities of the “maintainer” for the project. Maintainers

are the main group of software developers who manage the codebase.

Maintainers generally have full access to make changes to the codebase, and also

manage access controls for other types of contributors as well. Maintainers are

also responsible for reviewing and accepting contributions from the community.

Code reviews should be thorough, and allow for back-and-forth conversation

between the maintainers and the contributors. Provide feedback to contributors

to let them know what needs to change before their proposed change is accepted

into the main codebase.

Licensing Considerations

When releasing open source software, you should always release it under an

explicit license. Software licenses lay out the terms under which the software can

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 24

https://help.github.com/en/github/building-a-strong-community/setting-guidelines-for-repository-contributors
https://help.github.com/en/github/building-a-strong-community/setting-guidelines-for-repository-contributors
https://github.com/atom/atom/blob/master/CONTRIBUTING.md
https://github.com/opengovernment/opengovernment/blob/master/CONTRIBUTING.md
https://github.com/
https://github.com/opengovernment


be used by other people or entities. A license is legally binding, and protects you

as the author from unauthorized use of the software you create. It also protects

members of the community by clearly outlining permitted uses and granting

permission for use broadly so that they don’t need to seek individual deals with

you. Note that open source licenses don’t eliminate copyright, but work around

copyright to provide the software as open for all. Ownership and copyright are

covered in further detail later on in this report.

When releasing open source software, you should

always release it under an explicit license.

Different licenses permit different usage. For example, you might choose a

license that requires that the software may be used, repurposed, or modified

freely, as long as attribution is given to you. Opensource.com has a good

breakdown of the different kinds of attributes of software licenses.

The best practice for open source government software is to release under the

most permissive licenses available. Many government organizations use the MIT

license, which effectively gives full permissions to any parties to modify, use,

redistribute, or perform other activities with the source code. The MIT license is

popular because of its broad permissibility, as well as its brevity. Other

organizations use the Creative Commons Zero license, which puts the

software in the public domain. Public domain commonly refers to creative

materials not protected by intellectual property laws such as copyright,

trademark, or patent laws. The Open Source Initiative maintains a list of

licenses that they have reviewed and approved, which can be helpful when

determining which license or licenses you will use for your software.

Starting Open Versus Becoming Open

As you move to adopt open source practices across your projects, you will find

that there are differences between new projects that use open source from the

start, and existing projects and systems that need redevelopment to become

open. Starting new projects in an open source discipline ensures best practices up

front, enabling collaboration and providing transparency at the outset. Making

existing software and services open source allows others to learn from your work

and reuse the components you have already built. In addition, allowing

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 25

https://opensource.com/law/13/1/which-open-source-software-license-should-i-use
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://creativecommons.org/publicdomain/zero/1.0/
https://opensource.org/licenses
https://opensource.org/licenses


contributions to existing projects can bring in additional features or fixes, and

infuse the best practices of documentation and security into the project.

Starting New Projects in the Open

The best time to make a project open source is right from the start. This brings all

of the benefits of producing open source to your project immediately, such as

ensuring secure designs and simplifying collaboration. It saves time by building

for security and public availability as you go along, rather than having to lump it

all together at the end.

Starting projects as open source encourages better documentation from the start,

which enables the rapid onboarding of new contributors or team members as the

project grows. It often results in better designed software, since OSS is typically

more modular so that it can be easily understood by contributors. This decreases

the complexity of the software and improves the ease with which the system can

be built and ultimately maintained.

The best time to make a project open source is right

from the start.

Opening Existing Projects

It may be the case that you have existing custom-built, proprietary software

supporting your services. Reengineering existing software so it is open source

still provides the benefits we have discussed. It also provides an opportunity to

revisit the software and improve its security, design, and reusability. There are

valuable lessons in projects that have already seen real-world use, and making

these projects open source can save time and effort on future projects for you,

your organization, and for others around the world.

When making existing projects (sometimes called legacy solutions) open source,

there are steps you can take to ensure a smooth transition. We discuss some of

these in other parts of the report, but we have consolidated them here as an

outline for moving legacy solutions into the open. We also recommend reviewing

two documents written by GOV.UK: a case study about moving one of their

projects to the open, and a blog post on how to open up closed code.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 26

https://technology.blog.gov.uk/2014/12/19/how-we-moved-vcloud-tools-from-coding-in-the-open-to-open-source/
https://technology.blog.gov.uk/2014/12/19/how-we-moved-vcloud-tools-from-coding-in-the-open-to-open-source/
https://technology.blog.gov.uk/2018/02/19/how-to-open-up-closed-code/


Section Three: Using Open Source Software

A modern software system is made up of various smaller software components,

and each of these components can be either custom built, or reused from existing

open source projects. A report from Synopsys shows that the majority of

software in use today is open source, and much of that is at this component level

—building blocks of open source software stitched together to create systems and

applications. From basic open source software (OSS) components like code

compilers (such as gcc), to entire user-facing systems like WordPress, reusable

OSS spans a wide range of sizes and use cases.

Most OSS comes in these smaller components, sometimes called “packages” or

“libraries.” These open source packages are used in virtually all software built, as 

reported in the same Synopsys study. They handle small tasks that systems

everywhere need to handle, and do it in a simple, vetted, reusable way. For

example, many software systems reuse open source packages to make data

requests across the internet, or to encrypt and decrypt data. These

packages allow software engineers to save time by building on the existing work

of others.

When using smaller open source packages, software engineers use a “package

manager” to search for OSS packages that meet their needs, download those

packages, and link them into their own code. Package managers also manage

updates and version control. Advanced package managers also work to maintain

the security and availability of the packages available on their platform. This is

less involved than forking and modifying a project, but more technical than

simply installing an application such as Firefox.

In many cases, OSS is a whole system, such as in the case of WordPress or 

Firefox. These systems can be wholly reused to fulfill the needs of your

organization. For example, open source systems can be used for content

management or client relationship management. These complete, open source

applications are built to be used by non-technical consumers, and include simple

instructions for installation and usage. These systems are proven—they are stable

and reliable—and can be customized to fit a variety of needs. For example, the

White House has been operating its main whitehouse.gov website on

WordPress since December 2017, demonstrating the stability, security, and

reliability of an open source solution.

Regardless of whether your organization is looking to use smaller packages or

complete open source applications or systems, there are a number of

considerations to make when using existing open source software. Below, we’ll

explore these considerations.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 27

https://www.em360tech.com/wp-content/uploads/2018/09/Synopsys-Open-Source-Security-and-Risk-Analysis.pdf
https://gcc.gnu.org/
https://wordpress.org/about/
https://www.em360tech.com/wp-content/uploads/2018/09/Synopsys-Open-Source-Security-and-Risk-Analysis.pdf
https://github.com/psf/requests
https://github.com/psf/requests
https://tls.mbed.org/sha-256-source-code
https://wordpress.org/about/
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Introduction
https://www.whitehouse.gov/


Finding the Right Open Source Solutions

Finding open source software that meets a specific government need can be

difficult. Unlike proprietary licensed software, open source tools rarely have a

sales team marketing their brand. However, there are ways you can search for

open source tools to fit your needs and make the discovery process easier

including:

Search for generic applications based on their main function. For

example, if you are looking for a software system that you can use to track

applicants as they move through an approval process for a housing permit,

you can look for a more generic open source permit processing system

that fits your needs. On a smaller scale, if you need a component for your

larger system to send emails and text reminders to the public, then you

could look for an open source notification system.

Look for open source solutions used or produced by other similar

government entities. If you want a system to manage searches for

business records, chances are high that another agency or municipality

has done the same thing using OSS. Reach out to these peers via user

forums, developer communities on GitHub and Stack Exchange, LinkedIn

groups, and other networking opportunities and tell them what you need.

They may make suggestions, right down to giving you modifications that

work for your particular situation. Networking and information sharing

are particularly useful since you can partner with these users to contribute

back to the original open source software—especially if you add helpful

features.

Look at how other governments are leveraging open source

software for their services and operation, and learn about what you

can adapt in your own work. Many other offices and municipalities

have already started moving to open source solutions for a wide variety of

needs in their government, and can provide insights into what has worked

for them. Examine what they use to get a sense of what you can take and

reuse for your own needs. You may find some good ideas just by looking at

what exists, rather than finding something to fit a predetermined need.

Following the Terms of a License

Licenses provide safety for you as a consumer to use the software, as long

as you abide by the license terms. When using externally developed open

source software, you must follow the author’s license agreement. As a

consumer of the open source software, you are legally required to follow the

license of software you use. These licenses spell out the terms of use, including

• 

• 

• 

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 28

http://www.openpermit.org/index.html
https://github.com/alphagov/notifications-admin


how you are able to use, copy, or modify the code; whether you must attribute

your usage of the software; whether your software must use the same license if

you use their software as a component; and other types of requirements. The

license effectively describes the terms of use for the open source code. Open

source projects do not charge to use the software itself, and payment should

never be a part of an open source license. OSS licenses are not agreements you

make and sign with the authors. Instead, they allow the author to proactively give

permission to the software for a wide variety of uses. While the authors still carry

the copyright (which we cover later in this report), the license proactively allows

anyone to use the software.

If the authors of OSS do not provide an open source license, do not use

that software. The ambiguity of it introduces too many risks, and it’s safer to

find an alternative with a license that fulfills the same function. If you find

something you want to use that does not have a license, you may ask the authors

for a license to their software, but it’s up to them how they proceed.

Assessing Non-License Costs

OSS is free. This means that there are no costs to license or use the software code

itself. However, there can still be costs associated with using OSS. These costs

could include application or web hosting or personnel costs if your staff lacks the

skills to customize and support the software. As one of our interviewees told us,

“Open source is free as in puppies, not as in beer,” meaning that while you don’t

have to pay for the OSS, there may still be costs for its hosting and maintenance.

When using OSS applications that need to be hosted on a server, such as

WordPress, you still need server infrastructure on which the software will run.

These servers can range from extremely simple to highly sophisticated,

depending on the needs of your organization. In addition, you will need storage

for corresponding data and databases. Servers and storage infrastructure come at

a cost, albeit often a fairly cheap cost if you tap cloud services.

Even though you’re using software built by someone else, you may still need to

hire people to customize or update the software to fit your specific need. For

example, you may need software developers to copy the software used by one

jurisdiction and change it to match the language and function of your own. In

some cases, the software will have simple mechanisms for customization or

updating such that you won’t need technical talent.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 29



Even though you’re using software built by someone

else, you may still need to hire people to customize

or update the software to fit your specific need.

While there are some costs, they are negligible compared to the extensive costs

associated with licensing closed-source, proprietary software products. The

infrastructure costs can be simplified to merely what is needed for your system,

and these infrastructure costs tend to decrease over time. Likewise, the costs of

bringing in technical talent ensures that the lessons from performing this work

stays within your organization.

Determining Suitability of an Open Source Tool

Software that you bring into your organization should be well-

documented. Good documentation accounts for multiple audiences. It should

contain simple documentation for non-technical people to understand what it

does, even if the software itself is highly technical in nature. The documentation

should also explain how to use the software, with guides for integrating the

software in your organization and rolling it out to users. More technical

documentation, such as technical guides for integrations or explanations of the

code itself, are also helpful when using open source components or systems, and

especially if you plan on modifying the code itself for your context.

OSS that you use should be actively updated, with developers continually

iterating the application, applying security patches and releasing new

features. If software hasn’t been updated in years or even months, it’s likely that

it will not receive attention when there are needed updates, such as security fixes.

Instead, look for active communities and maintainers that regularly add features,

fix security issues and bugs, and generally update the software.

Where possible, look for open source projects that are supported and

maintained by established organizations. These organizations tend to have

more official practices for maintaining open source projects, and can provide

much more consistent support and community management. These maintainers

should enforce good community management practices, such as reviewing code

being submitted and actively informing the community of developments.

Examples of organizations that manage large amounts of open source software

include Apache, The Linux Foundation, Red Hat, Mozilla, and 18F.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 30

http://apache.org/
https://www.linuxfoundation.org/
https://www.redhat.com/en/about/open-source
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Introduction
https://github.com/18F


It’s likely that you might find an open source project that mostly matches your

needs but is missing one or two features, or has extra features you don’t need.

This is very normal, and showcases the strength of open source. If you need

additional features, you can add them, and submit those changes back to the

original project as a contributor so that others can take advantage of your work. If

you don’t have access to technical talent, you can start a conversation about your

needs with that project’s community.

Lastly, open source projects should clearly outline the various

restrictions, requirements, and processes they follow. The open source

license should be simple to find and clearly understood. Contributor guidelines

and other policies on contributions should also be simple to find and understand.

When these documents are clear and available, it protects you as a user from

license risks, and creates a joint understanding of how you can engage with the

project.

Incorporating Existing Open Source Tools

Once you’ve found an open source tool that you want to use—whether it’s a

component, or a full application—you’ll have to work to bring it into your

organization. The project’s documentation should be clear enough to make this

process simple. Depending on the type of software, how much it matches your

needs, and the size and complexity of the software, there are a variety of ways to

bring these open source tools into your organization.

In some cases, OSS is specifically built to be extremely simple to use. For

example, desktop applications like Firefox or OpenOffice allow people to simply

download and install them, as you might do with any other application. Open

source applications are no different from closed-source applications in this case,

and are typically easy to install and get up and running. The difference: these

open source applications allow for extensive configuration without having to

modify any of the source code itself.

For software that needs some amount of modification of source code (as opposed

to simpler configuration), you will likely create a copy (or a “fork”) of the source

code for your own organization to use. You can update and change this fork as

you see fit, as long as it is in accordance with the license. For example, the U.S.

Forms System was forked by the City of Austin so that they could make their

own modifications to it and maintain it as they needed. The City of Austin started

from the code provided by the U.S. Forms System, and modified it to meet their

particular needs. If, like the City of Austin did, you make changes you want to

contribute, you would need to submit the changes to the maintainer for approval.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 31

https://www.openoffice.org/
https://github.com/usds/us-forms-system
https://github.com/usds/us-forms-system
https://github.com/cityofaustin/us-forms-system


Section Four: Managing the Details

As you and your organization start introducing more open source software (OSS)

and practices into your infrastructure, you may run into some recurring issues.

For this reason—rather than encountering the same challenges every time you

embark on a new project, you may want to build an infrastructure that allows for

all projects to easily be made open source. Here, we’ve outlined some of the

details that should be kept in mind when moving your organization into a more

holistic open source strategy.

Develop Policies to Facilitate and Standardize the Use of Open
Source Solutions

Policies should encourage and support the broader usage of open source tools

within your organization. This may require getting executive buy-in and creating

teams to explore how open source will benefit your organization. Once you have

buy-in, clearly articulate that projects and teams are allowed to use open source

software, and provide clarity on how open source use may interact with other

policies. Give teams that want to use open source the permissions they need to do

so, and simplify the processes to let them focus on finding and matching software

to the needs of their users.

Create organization-wide policy to reduce the barrier to entry for adopting open

source practices. Use policy to standardize processes, clarify risk interpretation,

set expectations for open sourcing tools, and provide repeatable procedures for

projects just getting started. You can find examples of good open source policies

in GSA’s Open Source Policy and CFPB’s policy, and supporting details on 

Code.gov.

Open source policy is a great way to encourage and enforce the adoption of open

source principles. U.S. Federal policy M-16-21 set the bar for federal agencies

to support and use OSS. Since it was released, nearly 7,000 individual federal

source code repositories were made available to the public on code.gov. M-16-21

requires that agencies “release at least 20 percent of new custom-developed code

as Open Source Software,” which has encouraged the creation of open source

programs across the government.

Establishing a Licensing Policy

Use policy to clarify the interpretation of open source licenses and provide legal

consistency of the risks and benefits of open source. This can minimize the

misplaced concerns around legality that many hold around open source software.

Consistent interpretation is a huge benefit, as one of the larger hurdles with

organization-wide use of open source is the variable interpretations of open

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 32

https://open.gsa.gov/oss-policy/
https://www.consumerfinance.gov/about-us/blog/the-cfpbs-source-code-policy-open-and-shared/
https://www.code.gov/about/open-source/introduction
https://sourcecode.cio.gov/
https://code.gov/browse-projects?page=1&size=10&sort=data_quality


source licenses. As previously mentioned, these licenses range from

straightforward to complex, and the interpretations can vary depending on the

technical proficiency and risk attitude of the legal counsel involved. Creating a

consistent interpretation of open source licenses will smooth its use and access

across the board.

For example, creating policy that outlines pre-approved software licenses can

alleviate the burden of repeatedly seeking approvals. There are a set of

commonly-used licenses available from the Open Source Initiative, such as the

MIT license or the Mozilla Public License. Licenses vary in how they handle

attribution, license reciprocity, and other factors. Opensource.com discusses

some key differences in licenses in this blog post. It is highly likely that any

open source software that you are looking to use leverages one of the licenses

from the Open Source Initiative. Consider creating a policy that pre-approves

certain licenses so that any software with those licenses can be used in your

organization without requiring a license review.

Ownership

When building OSS, it’s important to make correct decisions on the licenses,

copyright, and general ownership of the software. There are many factors that

play into this, including your jurisdiction’s copyright laws. For example, in some

jurisdictions the government cannot hold any copyright, while in others the

government reserves all ownership. By collaborating closely with agency or

organization legal teams, communicating clearly to community members, and

using existing licenses, you can navigate this more challenging terrain and

develop a plan that meets your needs. Here, we outline some considerations and

common strategies. We also recommend reading GitHub’s simple guide to the

legal aspects of open source. However, the best practice is to involve legal

support from within your organization from inception, and task them with

figuring out how to make this work positively. Attorney and open source

developer Ben Balter provides a guide for government attorneys on open

source licensing that is worth the read.

Software written for government purposes and paid for by the

government, should always belong to the government—not to vendors or

contractors. This is true regardless of whether the software is open or closed.

With open software in particular, open sourcing the software does not eliminate

the government retaining copyright of the software it wrote and financed. When

procuring services with vendors, ownership and copyright for custom-written

software should be clearly outlined in contract documents with a caveat that it

belongs to the government. If your jurisdiction cannot hold ownership, then the

software should be placed in the public domain. By owning the copyright, you

ensure that you control the ability to open source the software, rather than

leaving it in the hands of vendors.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 33

https://opensource.org/licenses
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MPL-2.0
https://opensource.com/law/13/1/which-open-source-software-license-should-i-use
https://opensource.org/node/878
https://www.nationalarchives.gov.uk/information-management/re-using-public-sector-information/uk-government-licensing-framework/
https://opensource.guide/legal/
https://opensource.guide/legal/
https://ben.balter.com/2014/10/08/open-source-licensing-for-government-attorneys/
https://ben.balter.com/2014/10/08/open-source-licensing-for-government-attorneys/


OSS may have contributors who are not contracted vendors. This is, after all, one

of the great benefits of open sourcing your software. These contributors might be

other offices within the same government, public servants from different

municipalities, companies or nonprofit organizations, academics, or

constituents. To protect your organization’s interests and the interests of the

open source project, you should clearly articulate to contributors how the

licensing and copyright of their contributions will work. There are many ways to

do this, and varying industry opinions on the right path to take. One prevailing

option is to allow contributors to retain copyright of their contributions, but

stipulate that their contributions fall under your license, meaning that any

contributors to your project extend an unlimited license to use their code.

Alternatively, if you perform a code review of their software, you may be able to

argue that by performing the review, the software is released under the

appropriate license, as the Department of Defense has argued. Work with

your legal team to determine the right type of guidance to provide.

Managing Vendors

The government-vendor ecosystem is a vital one that ensures a constant

availability of up-to-date knowledge and talent in a flexible format to the

government. Historically, this ecosystem has operated outside the open source

world, using proprietary software or restricting ownership and usage of software.

The move to an open source paradigm will likely require changes to existing

business models, and as such, the vendor community may resist any changes in

the status quo. However, vendors can adopt open source practices in a way that

will support expanded business. Large tech providers, like IBM, have invested in

OSS as a way to break into new markets, offer value-added services and absorb

highly-skilled developer communities, proving that companies can still profit

from open source development.

While some vendors will adopt open source business models, others will be

resistant and hold onto proprietary software as a means of sustaining business.

As you start including open source in your procurement plans, take care to build

in protections and pay attention to details when commissioning software

development. Ensure that any contracts include explicit language stating that all

software used for the solution, whether newly written or reused, will be open

source. Also make it known that proprietary, closed-source software will not be

used for the solution. While this may seem redundant, it protects against vendors

who may use loopholes to lock you into their platform. Ensure that the

government owns the software that it pays for, and if possible, build into the

contract which open source license the software will use. Build on existing

precedent, adopting language used from previous open source procurements in

your or other jurisdictions. While many of these steps may seem defensive, it will

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 34

https://github.com/Code-dot-mil/code.mil/blob/master/INTENT.md


help protect you and your organization and make the move towards open source

faster and more securely.

System and Data Interoperability

Whether you are building a new system in the open or reusing existing open

source solutions, you will still be operating a system that likely collects data or

works in tandem with other systems or applications. This interoperability is

crucial to creating an effective software ecosystem that supports your business

needs. There are a few things you can keep in mind that support interoperability:

Bring knowledgeable people to the table to discuss interoperability

between various systems. If your operations depend on legacy systems,

ensure that someone who manages those systems is present for

discussions. They should be able to speak to the integration capabilities

and limitations of the legacy system. This simple act of bringing the right

people together, when done early on, can help drastically with reducing

any integration and interoperability pains. A good rule of thumb is to not

assume anything about legacy or new systems unless you have first-hand

knowledge.

Follow common data standards when recording data. If you

examine data, chances are high that at least one (if not several) data

schema standards already exist in your organization. These standards

help make the collection and sharing of data more consistent across

various organizations. Using one or more popular data standards ensures

that you’re taking advantage of the hard work that went into creating

them, saving you from the trouble of having to come up with the data

schemas on your own. Many organizations create and manage data

standards, such as schema.org.

Use systems that provide open interfaces (or, build open interfaces

into your systems) to facilitate the transfer of data. These open

interfaces, or APIs, allow other systems and software developers to

integrate with your solutions. Open interfaces should be well

documented. Wherever possible, use common standard interfaces for

standard data or operations, so that other systems know what to expect

and can integrate even more seamlessly.

In-House Technical Talent

Using OSS puts your organization much closer to the source code of the

technology you’re using than you may have ever been before. Many governments

• 

• 

• 

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 35

https://schema.org/


and organizations almost exclusively use customized proprietary software, and

remain unfamiliar with application source code. This is in part because many

organizations don’t have the in-house technical talent or expertise needed to

modify or make changes to such code. This is fairly normal, and is why the

government-vendor ecosystem is so important. Our recommendation is to bring

in talent who will support the usage of open source tools, while helping to build a

more modern, digital organization.

The following roles are central to any software product development team, and

will enable your organization to move towards an open source development

paradigm with confidence:

Product managers are broad experts, serving as the connecting point of

business needs, technology, and user experience. Product management,

not to be confused with program or project management, is a rare

discipline in government. Project managers set the vision and mission of

products and services, and drive the organization towards the successful

implementation and delivery of those products. Bring in a product

manager first—someone who has experience building modern live digital

products.

Designers and researchers are critical to ensuring that the solutions

being built solve real problems in ways that will result in tangible

outcomes. Designers and researchers can take many forms, from interface

design to service design. Choose what you need based on your context

and recommendations from your product manager.

Software engineers are the backbone of software development. Many

organizations and government agencies employ software engineers, but

they often work in roles that are removed from decision-making. Consider

hiring senior software engineers who can write and review code and who

manage technology teams and projects. Avoid various software

engineering substitutes, such as enterprise architects, as a senior software

engineer should be able to fill these roles.

It may seem like a tall order to bring in the talent required to manage OSS, but

ideally this talent can be used elsewhere in modern organizations that build and

offer services to the public. You won’t need to hire swaths of talent, instead, hire

enough in-house talent such that any tech-related departments or projects can

make use of it. There is no substitute for in-house expertise.

• 

• 

• 

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 36



Additional Resources

There are many considerations to juggle when embarking on an open source

strategy or developing open source software (OSS) solutions to improve public

services or administration. We have created the following resources you may

want to refer to in tandem with this report.

Checklist: How Governments Can Leverage Open Source Solutions: In

order to facilitate the steps we have covered in this report, we’ve provided a

consolidated list of recommendations for you to refer to as you think through or

manage an open source government project.

Open Source Project Hubs for COVID-19: In the wake of the 2020 outbreak of

the COVID-19 pandemic, multiple organizations produced lists of open source

software solutions that can be used in an effective response and recovery plan.

These project hubs shoulder the burden of open source project discovery, making

it easier for governments to find projects that fit their needs.

Further Reading on Open Source and Government: We recognize that for

some readers, our report may be a lot to digest. For other readers, this report may

have prompted a desire to dig deeper into the topic or brush up on proven open

source development practices. Alternatively, there may be more foundational

questions on the broader topic of software development that need to be

addressed before our open source content can be maximally useful to you.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 37

https://www.newamerica.org/digital-impact-governance-inititiative/reports/building-and-reusing-open-source-tools-government/checklist-how-governments-can-leverage-open-source-solutions
https://www.newamerica.org/digital-impact-governance-inititiative/reports/building-and-reusing-open-source-tools-government/checklist-how-governments-can-leverage-open-source-solutions
https://www.newamerica.org/digital-impact-governance-inititiative/reports/building-and-reusing-open-source-tools-government/appendix-b-open-source-project-hubs-for-covid-19
https://www.newamerica.org/digital-impact-governance-inititiative/reports/building-and-reusing-open-source-tools-government/appendix-b-open-source-project-hubs-for-covid-19
https://www.newamerica.org/digital-impact-governance-inititiative/reports/building-and-reusing-open-source-tools-government/appendix-a-further-reading
https://www.newamerica.org/digital-impact-governance-inititiative/reports/building-and-reusing-open-source-tools-government/appendix-a-further-reading


Checklist for How Governments Can Leverage
Open Source Solutions

Software for public benefit should be open source by default

Create organization-wide open source policies: Create organization-

wide policies that establish that all teams and offices pursue open source

solutions before acquiring, designing, or building their own systems.

Policies can also outline processes and decisions to make it easier for

teams to adopt open source, such as pre-vetting open source licenses that

can be used.

Make usage of open source a priority: Technology modernization is a

top priority for many governments in response to aging legacy systems

and heightened constituent and user expectations of transparency and

service quality. Open source software should be a part of these priorities

and efforts. Open source software can reduce costs, improve

transparency, and lead to more efficient services by building on solutions

that have been developed to address the same challenge, rather than

reinventing wheels.

Clarify misconceptions on the security of open source solutions:

Many believe that open source software is less secure, due to the nature of

the source code being available to the public. However, the process of

making application source code open can make it more secure in a

number of ways: open source code can be reviewed by independent

security analysts, making discovery of any issues faster and more

actionable. The Department of Defense, Department of Homeland

Security, and UK Government have all vetted open source as a secure

method of developing software.

Work in the open: When adopting open source principles, projects

should not just be opened upon completion. Instead, all development

work should be done in the open. This includes everything from coding to

documentation, as well as research and decision-making artifacts. In

some cases, such as when policy is not yet released, this may not be

possible. But as soon as it is, all historical work and all work going forward

—not simply the finished product—should be done in the open.

Publicly document your work: Open source projects should include

comprehensive public documentation that is maintained as up-to-date as

possible. While most organizations that have used closed systems are

1. 

2. 

3. 

4. 

5. 

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 38

https://dodcio.defense.gov/open-source-software-faq/
https://www.dhs.gov/sites/default/files/publications/Open%20Source%20Software%20in%20Government%20%E2%80%93%20Challenges%20and%20Opportunities_Final.pdf
https://www.dhs.gov/sites/default/files/publications/Open%20Source%20Software%20in%20Government%20%E2%80%93%20Challenges%20and%20Opportunities_Final.pdf
https://www.gov.uk/government/publications/open-source-guidance/security-considerations-when-coding-in-the-open


accustomed to receiving end-user documentation like user manuals, good

open source software is itself well-documented, from project roadmap

documentation that outlines the plan for the project, to contribution

guidelines that guide outside developers on how they can best contribute,

and software documentation that explains how different portions of the

software work. For good references on projects that have achieved these

goals, see the Atom repository and the VSCode.

Use permissible open source software licenses: The open source

software license ecosystem is robust, mature, and well-understood. Many

resources exist to support navigating licenses, such as the Open Source

Initiative’s list of licenses or GitHub’s choosealicense.com. We

recommend permissive licenses, such as the MIT license and the 

Apache license, as they give anyone the ability to use, modify, and

redistribute the software as they see fit, which will help not only your

organization, but others who are trying to solve a similar problem for their

constituents.

Migrate existing software and code to open source: While the best

practice is to make projects open from the start, an existing closed system

doesn’t necessarily have to remain closed. Opening existing projects is

worth the effort, even though it can be difficult. The process provides

value in the various arenas described throughout the report, including

security, transparency, and accountability. Migrating existing projects

tends to be more difficult because the entire project needs to be reviewed

prior to being made open. Reviews should check for and resolve security

vulnerabilities, including bugs as well as sensitive information (e.g.

passwords) that were written into code. It also requires all documentation

to be updated.

Hire in-house technical talent to manage common open source

solutions: As with any technology project, certain types of in-house

expertise are critical in using and managing open source solutions. Hire

technical talent, such as product managers, designers, and senior

software engineers, to support building, modifying, and using open

source software.

Facilitate interoperability: Whether you are building a new system in

the open or reusing existing open source solutions, you will still be

operating a system that likely collects data or works in tandem with other

systems or applications. Incorporating team members who are

knowledgeable about existing systems and prevalent data standards will

drastically reduce integration pains down the road. Use open interfaces, or

APIs, that are well-documented and automate the transfer of data to ease

future system integrations.

6. 

7. 

8. 

9. 

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 39

https://github.com/atom/atom/blob/master/CONTRIBUTING.md
https://github.com/microsoft/vscode
https://opensource.org/licenses
https://opensource.org/licenses
https://choosealicense.com/
https://opensource.org/licenses/MIT
https://www.apache.org/licenses/LICENSE-2.0


Follow product development best practices: Whether software

development is open source or not, it is essential to learn from and follow

known software development best practices. Follow established

approaches such as agile development to define clear goals, build

iteratively, and design with users in mind. We find GOV.UK and the U.S.

Digital Services Playbook to be great starting points for understanding

best practices for creating government digital services.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 40

10. 

https://www.agilealliance.org/agile101/
https://www.gov.uk/service-manual
https://playbook.cio.gov/
https://playbook.cio.gov/


Open Source Project Hubs for COVID-19

In the wake of the outbreak of the COVID-19 pandemic, multiple organizations

have produced lists of open source software that can be used in an effective

response and recovery plan. These project hubs shoulder the burden of open

source project discovery, making it easier for governments to find projects that fit

their needs. We recommend that any governments looking to expand their use of

open source look to these resources. Using open source tools to tackle problems

and systemic changes related to the pandemic provides all of the benefits that

we’ve listed throughout this report, including increasing accountability and

transparency, reducing risk and cost, and enabling faster deployment of tried and

tested solutions.

New America produced the Pandemic Response Repository, a

collection of open source digital resources to help governments respond to

the Coronavirus.

The Government of Canada produced Open Call, currently in alpha,

which includes free digital tools to address common COVID-19

challenges and free technical support for government teams.

The United Nations Development Programme’s Global Centre in

Singapore produced the Open Source Digital Tools to tackle

COVID-19, which is a collection of open source tools to accelerate the

digital response to COVID-19.

• 

• 

• 

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 41

https://newamericafoundation.github.io/pandemic-response-repository/
https://opencall-appelouvert.alpha.canada.ca/
https://sgtechcentre.undp.org/content/sgtechcentre/en/home/digital-tools-for-covid-19.html
https://sgtechcentre.undp.org/content/sgtechcentre/en/home/digital-tools-for-covid-19.html


Further Reading

Primers on Open Source

Open Source Guides

A series of guides recommended by the United States General Services

Administration that introduce readers to the open source development model.

Open Source Licensing: What Every Technologist Should Know

A short introduction to the various types of open source licenses, including the

history of OSS licenses and the differences between permissive and copyleft

licenses.

Making Source Code More Open and Reusable

A brief article about improving the security, effectiveness, and reusability of

code.

Be Open and Use Open Source

Resource that delves into the difference between OSS and open standards. This

tool also discusses benefits such as readily-available software, saving time and

resources to solve common challenges, lower implementation and running costs,

and the ability to integrate with closed-source software.

Roads and Bridges: The Unseen Labor Behind our Digital Infrastructure

Explains OSS economics, describes a historical description of the rise of OSS and

its contrast with traditional proprietary software.

Benefits of Open Source

Why Open Source Matters

Blog post from the Canadian Digital Service (CDS) that describes the benefits of

open source, the approach taken by the CDS, and an FAQ about security,

personally identifiable information, and what to not open.

The Benefits of Coding in the Open

Nine reasons why the United Kingdom’s Government Digital Service

recommends coding in the open.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 42

https://opensource.guide/
https://opensource.guide/
https://opensource.com/article/17/9/open-source-licensing
https://opensource.com/article/17/9/open-source-licensing
https://www.gov.uk/service-manual/technology/making-source-code-open-and-reusable
https://www.gov.uk/service-manual/technology/making-source-code-open-and-reusable
https://www.gov.uk/guidance/be-open-and-use-open-source
https://www.gov.uk/guidance/be-open-and-use-open-source
https://www.fordfoundation.org/media/2976/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure.pdf
https://www.fordfoundation.org/media/2976/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure.pdf
https://digital.canada.ca/2020/02/24/why-open-source-matters/
https://digital.canada.ca/2020/02/24/why-open-source-matters/
https://gds.blog.gov.uk/2017/09/04/the-benefits-of-coding-in-the-open/
https://gds.blog.gov.uk/2017/09/04/the-benefits-of-coding-in-the-open/


Government Open Source Resources and Projects

Open Source Software in Government: Challenges and Opportunities

Identifies common challenges with collaborative software development and its

use in government, including misconceptions and questions about open source

and policies that obstruct OSS development.

Department of Defense Open Source Software (OSS) FAQ

Long-form FAQ from the DoD about OSS, licensing, security, and its

development, use, and release by the U.S. government.

Digital Public Benefits Alliance

The Alliance hosts a platform that aids organizations in discovering openly-

licensed technologies, data models, and other resources that can be deployed to

support the sustainable development goals (SDGs).

Open Source Best Practices

Best Practices for Maintainers

A set of resources to help open source developers who are responsible for

maintaining a software project, including clearly communicating project

expectations, mastering documentation, and empowering contributors to find

solutions to shared challenges.

When Code Should Be Open or Closed?

Summarizes the grounds for keeping code closed and why other code should be

open.

How to Open Up Closed Code

A set of simple suggestions if government offices want to open previously

proprietary code.

Security and Open Source

Security Considerations When Coding in the Open

Guidance from the United Kingdom’s Government Digital Services about

security and open source software.

Keeping Programs Secure with the Appropriate Level of Security

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 43

https://www.dhs.gov/sites/default/files/publications/Open%20Source%20Software%20in%20Government%20%E2%80%93%20Challenges%20and%20Opportunities_Final.pdf
https://www.dhs.gov/sites/default/files/publications/Open%20Source%20Software%20in%20Government%20%E2%80%93%20Challenges%20and%20Opportunities_Final.pdf
https://dodcio.defense.gov/open-source-software-faq/
https://dodcio.defense.gov/open-source-software-faq/
https://digitalpublicgoods.net/
https://digitalpublicgoods.net/
https://opensource.guide/best-practices/
https://opensource.guide/best-practices/
https://www.gov.uk/government/publications/open-source-guidance/when-code-should-be-open-or-closed
https://www.gov.uk/government/publications/open-source-guidance/when-code-should-be-open-or-closed
https://technology.blog.gov.uk/2018/02/19/how-to-open-up-closed-code/
https://technology.blog.gov.uk/2018/02/19/how-to-open-up-closed-code/
https://www.gov.uk/government/publications/open-source-guidance/security-considerations-when-coding-in-the-open
https://www.gov.uk/government/publications/open-source-guidance/security-considerations-when-coding-in-the-open
https://www.gov.uk/guidance/make-things-secure
https://www.gov.uk/guidance/make-things-secure


Advice on how to assess security risks of a government program, including

performing access audits, building risk mitigation plans, and fostering a culture

of constant monitoring and improvement.

Vulnerabilities in the Core

A report by the Linux Foundation presenting the initial findings of a census

assessing the scope of open source software used in programs and infrastructure

within the private and public sectors.

Don’t Be Afraid to Code in the Open: Here’s How to Do It Securely

The United Kingdom Government Digital Service provides guidance on the

different situations in which it is most secure to keep source code closed to the

public versus when it is safe to offer it openly.

Legal and Open Source

The Legal Side of Open Source

GitHub’s high-level primer for legal teams to understand the legal implications of

open source.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/ 44

https://www.coreinfrastructure.org/wp-content/uploads/sites/6/2020/02/census_ii_vulnerabilities_in_the_core.pdf
https://www.coreinfrastructure.org/wp-content/uploads/sites/6/2020/02/census_ii_vulnerabilities_in_the_core.pdf
https://technology.blog.gov.uk/2017/09/27/dont-be-afraid-to-code-in-the-open-heres-how-to-do-it-securely/
https://technology.blog.gov.uk/2017/09/27/dont-be-afraid-to-code-in-the-open-heres-how-to-do-it-securely/
https://opensource.guide/legal/
https://opensource.guide/legal/


This report carries a Creative Commons Attribution
4.0 International license, which permits re-use of
New America content when proper attribution is
provided. This means you are free to share and adapt
New America’s work, or include our content in
derivative works, under the following conditions:

• Attribution. You must give appropriate credit,
provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor
endorses you or your use.

For the full legal code of this Creative Commons
license, please visit creativecommons.org.

If you have any questions about citing or reusing
New America content, please visit 
www.newamerica.org.

All photos in this report are supplied by, and licensed
to, shutterstock.com unless otherwise stated.
Photos from federal government sources are used
under section 105 of the Copyright Act.

newamerica.org/digital-impact-governance-initiative/reports/building-and-reusing-open-source-tools-
government/


	Building and Reusing Open Source Tools for Government
	Acknowledgments
	Interviewees
	Inspiration

	About the Author(s)
	About New America
	About Digital Impact and Governance Initiative
	About Public Interest Technology
	Contents
	Contents Cont'd

	Overview
	Who Should Read this Report
	The Structure of this Report

	Section One: An Overview of Open Source
	What is Open Source Software?
	Why Use Open Source?
	Five Paths to Open Source Software in Government
	Common Concerns and Questions

	Section Two: Building Open Source Software
	Working in the Open
	Utilizing Open Source Communities
	Starting Open Versus Becoming Open

	Section Three: Using Open Source Software
	Finding the Right Open Source Solutions
	Following the Terms of a License
	Determining Suitability of an Open Source Tool
	Incorporating Existing Open Source Tools

	Section Four: Managing the Details
	Develop Policies to Facilitate and Standardize the Use of Open Source Solutions
	Ownership
	Managing Vendors
	System and Data Interoperability
	In-House Technical Talent

	Additional Resources
	Checklist for How Governments Can Leverage Open Source Solutions
	Software for public benefit should be open source by default

	Open Source Project Hubs for COVID-19
	Further Reading
	Primers on Open Source
	Benefits of Open Source
	Government Open Source Resources and Projects
	Open Source Best Practices
	Security and Open Source
	Legal and Open Source
	Notes




